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Abstract

We present a method to image Jones vector by use of digital holography. We demonstrate that with a single ho-

logram acquisition, the method allows to image and to calculate Jones vector and derive the polarization parameters.

The principle consists in using two reference waves polarized orthogonally that interfere with an object wave and to

reconstruct separately the two wave fronts. Simulated and experimental data are compared to a theoretical model in

order to evaluate the precision limit of the method for different polarization states of the object wave.
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1. Introduction

Polarization studies can be divided into two cat-

egories: those for measuring the time dependence of

the state of polarization (SOP) [1] and those for

measuring the space dependence [2,3]. The main

difficulty rises from the fact that very few techniques

allow for simultaneous record of SOP parameters.

Indeed, most polarimetric techniques need polari-

zation-analyzing optics (polarizers, rotators and re-
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tarders) that must be used at various settings to

record several images, from which SOP parameters
can be determined using more or less complicated

algorithms. Such procedures require generally sev-

eral rotations of the analyzing optics that takes a

long time compared to the acquisition performances

of a charge coupled device (CCD) camera. A solu-

tion was given by Oldenbourg andMei [4], who used

a liquid-crystal universal compensator to improve

the temporal resolution. Another idea is to record all
SOP parameters with only one image acquisition.

Therefore the time-resolution depends only on the

camera characteristics. Oka et al. adopted birefrin-

gent wedge prisms to record the SOP Stokes
ed.
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parameters carried on fringes patterns having dif-

ferent spatial frequencies. A demodulation of the

obtained image using Fourier transform allows to

compute the Stokes parameters [5]. An older idea

presented by Ohtsuka and Oka [6] used a Mach–

Zender type interferometer to record an interfero-
gram resulting from the interference between an

object wave, and two orthogonal linearly polarized

reference waves. The resulting interference pattern is

then collected by a lens in order to focus an image of

the specimen on the CCD. Here also, a Fourier

based analysis provides the SOP parameters.

The method proposed here is very similar to the

last one, since we also use two orthogonal linearly
polarized reference waves. But according to the

principle of digital holographic imaging presented

in [7] the main difference comes from the fact that

the imaging lens can be suppressed. The interfer-

ence between the two reference waves and the

object wave provides a hologram recorded in an

off-axis geometry. Instead of using a Fourier

transform to calculate the SOP parameters, the
hologram is reconstructed in amplitude and phase

for each polarization components by computing

the illumination of the hologram by digital refer-

ence waves as explained in [7]. From one holo-

gram, the numerical reconstruction process gives

four images, two (amplitude and phase) for each

orthogonally polarized reference wave. From this

set of images, a quantitative evaluation of the 2D
distribution of the Jones vector parameters can be

performed [8]. In this paper numerical simulations

and experimental data are compared to a theo-

retical model in order to evaluate the precision and

the limitations of the method.
2. Theory

The wave polarization properties can be ex-

pressed by use of the Jones formalism [9]. The SOP

is expressed by the Jones vector associated to a

base xyz where z is along the wave propagation

direction and x and y are fixed by the operator.

The Jones vector of a wave E can be written as

JE ¼ e1
e2

� �
¼ e01

e02 e
iDuE

� �
; ð1Þ
where e1 and e2 are complex. Instead of four pa-

rameters as in Eq. (1) (two amplitude and two

phase parameters), the SOP can be expressed with

only two parameters e ¼ arctanðe02=e01Þ, where

e01 ¼ je1j and e02 ¼ je2j are, respectively, the ampli-
tude of e1 and e2, e is the azimuth of the polari-

zation ellipse and DuE ¼ phaseðe2Þ)phase(e1) is

the phase difference. To simplify the notation we

use the complex values e1 and e2.
A modified Mach–Zender set-up (Fig. 1(a)) al-

lows creating holograms in off-axes geometry, by

producing the interference between an object wave

O and two orthogonal linear polarized waves R1

and R2 coming from two different spatial directions

(Fig. 1(b)). The respective Jones vectors of O; R1

and R2 associated to their respective basis are:

JO ¼
o1
o2

� �
ðxyÞO

¼
o1
o2
0

0
B@

1
CA

ðxyzÞO

;

JR1
¼

r1
0

� �
ðxyÞR1

¼
r1
0

0

0
B@

1
CA

ðxyzÞR1

;

JR2
¼

0

r2

� �
ðxyÞR2

¼
0

r2
0

0
B@

1
CA

ðxyzÞR2

:

ð2Þ

For each base, the off-axis geometry defines

the z direction and the operator defines the x
and y directions by adjusting polarizers. To

avoid any interference between reference waves,

xR1
and yR2

should be orthogonal. Moreover, xO
and yO should be orthogonal to, respectively, xR1

and yR2
to avoid any interference between o1 and

r2, and o2 and r1. Therefore, the planes (dashed
rectangles in Fig. 1(b)) xOzO (containing O and

R2) yOzO (containing O and R1) are orthogonal.

The angles h1 and h2, as defined in Fig. 1(b), are

the experimental parameters that define the two

different propagation directions of the reference

waves. Satisfying all these conditions and as-

suming plane waves, the different waves are

written in ðxyzÞO base as

O ¼ JO e
iðkOrþ/Oðx;yÞÞ; R1 ¼ JR1

eik1r; R2 ¼ JR2
eik2r;

ð3Þ
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Fig. 1. (a) Experimental set-up: Oin – illuminating wave; O – object wave; R1 and R2 – polarized reference waves; Pol. a� – polarizer

oriented at a�; k=2 – half wave plate; M – mirror; BS – beam splitter. (b) Detail showing the off-axis geometry at the incidence on the

CCD. The xOyO plane is parallel to the CCD camera. R1 in the yOzO plane and R2 in the xOzO plane are coming from different spatial

directions.
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where r ¼ ðx; y; zÞ is the position vector, /Oðx; yÞ is
the phase delay induced by the sample topogra-

phy. The wave vectors are written

kO ¼ 2p
k

0

0

1

2
64

3
75; k1 ¼

2p
k

0

sin h1ð Þ
cosðh1Þ

2
64

3
75;

k2 ¼
2p
k

� sinðh2Þ
0

cosðh2Þ

2
64

3
75: ð4Þ

where k is the wavelength of the laser used.
Now, a hologram of N � N points can be per-

formed by simulating the interference between

these three waves in the plane z ¼ 0 and by inte-

grating on one pixel size

IHði; jÞ ¼
Z ixþðx=2Þ

ix�ðx=2Þ

Z jyþðy=2Þ

jy�ðy=2Þ
ðR1 þ R2 þOÞ

� ðR1 þ R2 þOÞ� dxdy; ð5Þ
where i, j are integers (�N=26 i, j < N=2) and

x ¼ y is the pixel size of CCD camera. Assuming

that the waves are plane, it is possible to find an

analytic solution to this integral. Hence, ‘‘perfect’’
holograms can be achieved (perfect in sense that

we take into account the pixel size when integrat-

ing and we assume that holograms have no noise).
Without a priori knowledge, the hologram in-

tensity defined in Eq. (5) can be written as

IHðx; yÞ ¼ ðR1 þ R2 þOÞðR1 þ R2 þOÞ�

¼ R1j j2 þ R2j j2 þ Oj j2 þ R1O
�

þ R2O
� þ R�

1O þ R�
2O: ð6Þ

The three first terms of Eq. (6) form the zero

order of diffraction; the fourth and fifth terms

produce two real images corresponding, respec-

tively, to linear horizontal and vertical SOP. The

last two terms produce the virtual images.

To reconstruct the SOP images of the object

wave, the algorithm presented in [7] and adapted in
[8] is used. It consists in simulating the standard

optical reconstruction of hologram. In classical

holography, reconstruction is achieved by illumi-

nation of the hologram with a replica of the refer-

ence wave. A wave frontWðx; yÞ ¼ Rðx; yÞIHðx; yÞ is
transmitted by the hologram and propagates to-

ward an observation plane, where a three-dimen-

sional image of the object can be observed. Here as
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Fig. 2. Use of reference area in the object arm. Oin – illumi-

nating wave, Pol. c – polarizer oriented at angle c, used as

reference area for the phase difference offset determination. A is

the reference area where phase difference is 0 and B the area

where the measurement of O is done.
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we reconstruct a digital hologram, a digital trans-

mitted wave front Wðix; jyÞ is computed by multi-

plication of digital hologram IHði; jÞ by a digitally

computed reference wave RDði; jÞ, called the digital

reference wave. Assuming we are dealing with

plane waves, RD can be calculated as follows:

RD ¼ exp kDxi�x
�h

þ kDyj�y
�i

; ð7Þ

where kDx, and kDy are the two components of the

wave vector. The digital transmitted wave front

Wðix; jyÞ is defined in the hologram plane xOyO.
The propagation of the wave front W is simulated

by a numerical calculation of scalar diffraction in

the Fresnel approximation. The reconstructed

wave front WðmDn; nDgÞ, at a distance d from the

hologram plane, in an observation plane Ong, is
computed by use of a discrete expression of the

Fresnel integral

WðmDn;nDgÞ

¼Aexp
ip
kd

m2Dn2þn2Dg2
� �� �

�FFT RDði;jÞIHði;jÞexp
ip
kd

i2�x2þj2�y2
� �� �	 


m;n

;

ð8Þ
where m and n are integers (�N=26m, n < N=2),
FFT is the Fast Fourier Transform operator, and

A ¼ expði2pd=kÞ=ðikdÞ. Dn and Dg are the sam-

pling intervals in the observation plane.
Considering only the virtual images of Eq. (6),

the wave fronts corresponding to the two respec-

tive digital reference waves are:

W1 ¼ RD1R
�
1O; RD1 ¼ expðkD1x � i�xþ kD1y � j�yÞ;

W2 ¼ RD2R
�
2O; RD2 ¼ expðkD2x � i�xþ kD2y � j�yÞ;

ð9Þ

where kD1x, kD1y , kD2x, kD2y are four parameters

adjusted to achieve identical propagation direc-

tions for Ri and RDi (i ¼ 1; 2). The off-axis geom-

etry allows separating the different orders,
therefore the different areas corresponding to W1

and W2 can be selected on the reconstruction

plane. Using Eqs. (2) and (3) in Eq. (9) and taking

the amplitude and the phase of W1 and W2 gives:
W1j j ¼ r1o1j j ¼ r1j j o1j j;
phase W1ð Þ ¼ phase o1ð Þ � phaseðr1Þ þ /O;

W2j j ¼ r2o2j j ¼ r2j j o2j j;
phase W2ð Þ ¼ phase o2ð Þ � phaseðr2Þ þ /O:

ð10Þ
Assuming jr1j ¼ jr2j, the phase difference DuO

and the azimuth e parameters can be expressed
from Eq. (10):

tanðeÞ ¼ W2j j
W1j j ¼

o2j j
o1j j ;

DuO ¼ phase W2ð Þ � phase W1ð Þ þ DuR;

ð11Þ

where DuR ¼ phaseðr2Þ � phaseðr1Þ can be can-

celled by a calibrated phase difference offset applied
to the phase difference image. Experimentally, this

term is time-dependent because of vibrations, air

flux, but it can be suppressed on the image by a

phase difference offset equal to �DuR. To adjust

this offset, a known polarization state area is used

in the image. For example a polarizer, that pro-

duces a phase difference of 0�, is placed in the object

wave as shown in Fig. 2. Therefore a measurement
of the mean phase difference in this area directly

gives DuR.

To evaluate the reconstruction algorithm, we

simulate some series of holograms resulting from

the interference between the reference waves and

the object wave of a known SOP. Then, we com-

pare the theoretical values with those calculated by

the hologram reconstruction. The input object
wave Oin is chosen (wave in the object arm before

transmission through the sample) as a linear
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polarization oriented at 45� (in Fig. 1 polarizer

angle a ¼ 45�), the Jones vector of this wave is

JOin
¼ 1

1

� �
: ð12Þ

Then, a half wave plate is used as sample and

different holograms are simulated (or recorded) for

different orientations of it. A wave retarder with an

orientation d is represented by the Jones matrix

T ðdÞ ¼ Rð�dÞ 1 0

0 expð�iCÞ

� �
RðdÞ; ð13Þ

where C ¼ p for half wave retarder. R is the matrix
of the coordinates transformation

RðdÞ ¼ cosðdÞ sinðdÞ
� sinðdÞ cosðdÞ

� �
: ð14Þ

Therefore, the Jones vector of O becomes

JO ¼ T ðdÞJOin
: ð15Þ

The results compare the theoretical SOP of JO,
with the parameters obtained by the reconstruc-

tion of the simulated holograms and finally with

the parameters obtained by the reconstruction of

the experimental holograms.
3. Results and discussion

For the simulation, the actual parameters

measured on the set-up are used. The laser is a He–
Fig. 3. Comparison between (a) simulated ho
Ne with a wavelength of 632.8 nm. The angles

between each reference wave and the object wave

are h1 ¼ h2 ¼ 0:72� and the pixel size of the CCD

camera used (Hitashi KP-M2 CCIR) is 8.6 lm.

These parameters allow simulating N � N holo-

grams with Eq. (5). The reconstruction algorithm
uses usually 512� 512 pixels holograms, but for

comparison 256� 256 pixels holograms are pre-

sented in Fig. 3.

In Fig. 4 the amplitude and the phase contrasts

of the reconstructed wave fronts are presented.

For the experimental reconstruction, a polarizer is

introduced as a reference area (A in Fig. 4) as

explained in the last chapter (Fig. 2). Computing
pixel per pixel the inverse tangent of the quotient

of the second image by the first one yields the

azimuth e image and computing the difference

between the fourth and the third gives the phase

difference image DuO. The results are presented in

Fig. 5.

Simulating or recording holograms for different

orientations of a half wave plate used as sample (0�
to 180� by 1� step) permits to compare theoretical

SOP and reconstructed SOP mean value calculated

in regions of interest (ROI defined by solid rect-

angles in Fig. 5) of reconstructed images. To de-

termine the phase difference with the experimental

holograms, the phase difference offset is calculated

as explained before by using the mean value in the

ROI of the reference area (dashed rectangle in
logram and (b) experimental hologram.



Fig. 4. Amplitude and phase contrasts reconstructed for (a) simulated hologram and (b) experimental hologram. In experimental

images, the area A on the left is the polarizer and B the half wave plate.
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Fig. 5). The result is presented in Fig. 6. An almost

perfect superposition of the theoretical and simu-
lated curves is achieved, while the experimental

curves are in good agreement. To permit a better

comparison, Fig. 7 presents the difference between

theoretical and reconstructed SOP values. The

precision of SOP parameters for a single pixel is

evaluated by computing the standard deviation of

SOP parameters in the same ROI (Fig. 8).

The graphs about mean values (Fig. 7) show
that there is an important difference between er-

rors for the simulated and errors for the experi-

mental set-up (0.01� and 1� for the azimuth for,

respectively, simulated and experimental set-up,

and 0.03� and 5� for phase difference). However a

similar behavior can be observed. The experi-

mental results on the azimuth errors show four

peaks (arrows in Fig. 7(a)), also observable on
simulation results (fit in Fig. 7(a)). These four
Fig. 5. Polarization parameters images for simulated hologram (a) an

and standard deviations are calculated with pixel values inside the RO

difference image, the mean value calculated in the dashed ROI permi
critical orientations of the half-wave plate corre-

spond to a linear horizontal (d ¼ 22:5�, 112.5�)
and vertical (d ¼ 67:5�, 157.5�) polarized object

wave. For these orientations, the amplitude cor-

responding to an orthogonal polarization should

be zero. Different contributions appearing in the

image account for the observed amplitude offset.

The first very low contribution comes from algo-

rithm and will be called ‘‘numerical noise’’. It

provides the explanation of the observed offset on
simulations. The experimental set-up gives a

higher offset amplitude component. Indeed the

experimental holograms are disturbed by different

noise sources. The first source is the ‘‘structural

noise’’ coming from a coherent interference be-

tween parasitic waves (reflection on optics, dif-

fraction on dust, etc.). The second one comes from

the CCD camera which is affected by such as
electronic noise, shot noise, dark noise and so on.
d experimental hologram (b). The calculus of SOP mean values

I defined by the solid rectangles. In case of experimental phase

ts to adjust the phase difference offset.



 

Fig. 6. Comparison between theory and (a) simulated reconstructed holograms and (b) experimental reconstructed holograms.
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Finally misalignments and small errors on the
optics orientations are error sources. A simple

model allows fitting the simulated and experi-
mental values. Assuming an amplitude offset equal
to a percentage a and b of respectively, maximum

jo1j and jo2j amplitude, the azimuth error is written



Fig. 8. Standard deviation of the polarization parameters for

the measurement in object area: (a) azimuth and (b) phase

difference.
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et � ec ¼ et � arctan
o2j j þ amax o2j jð Þ
o1j j þ bmax o1j jð Þ

� �
; ð16Þ

where et and ec are, respectively, the theoretical and
calculated azimuth, and maxðjoijÞ, the maximum of

amplitude for the object wave polarized horizon-

tally (i ¼ 1) or vertically (i ¼ 2). Fits in Fig. 7(a) are

plotted with a ¼ b ¼ 0:007% for the simulation

and a ¼ 5%, b ¼ 5:5% for the experimentation.

Rapid variations in experimental values can be
explained by time instabilities mostly due to vi-

brations, air turbulence, that produces intensity

variations for all interferences (interference be-

tween the object and reference waves and ‘‘struc-

tural noise’’). For the simulation, truncated values

in the algorithm can explain the rapid variation

phenomena. A solution to avoid error due to the

background is to calibrate the method by sup-
pressing the background numerically before cal-

culating azimuth. On the contrary it is difficult to

suppress the errors due to the time instability.

The graph of the phase difference errors in

Fig. 7(b) shows as expected a huge errors for the

critical orientations (arrows in Fig. 7(b)). Indeed,

for these orientations, the fringe pattern corre-

sponding to the orthogonally polarized reference
wave disappears. Therefore the algorithm can not

reconstruct the phase image and a random phase

image is obtained. The subtraction between the two

phase contrasts contains also a random phase and

an undefined phase difference is reconstructed.

Moreover, a similar phenomenon (arrowwith point

in Fig. 7(b)) appears when the polarizer used as a

reference area stops the input object wave. In this
case, the reference area is undefined and therefore

the phase difference offset cannot be calibrated.

The standard deviation on the images provides

a mean of evaluating the quality of the imaging

method. Fig. 8 shows that the limit of the algo-

rithm is a standard deviation of about 0.12� for the
azimuth and 0.3� for the phase difference (for an

orientation different that the critical angles defined
in the last paragraph). Experimentally, the limits

are higher because of the same reasons explained

before. For the azimuth measurement, Fig. 8(a)

shows that experimentally the standard deviation

is minimal for the critical angles. It can be un-

derstood with a simple error calculation
De ¼ De
o o1j jD o1j j þ oe

o o2j jD o2j j

¼ o2j jD o1j j
o1j j2 þ o2j j2

þ o1j jD o2j j
o1j j2 þ o2j j2

: ð17Þ

Fig. 9 shows a linear relation
D oij j ¼ ai1 þ ai2 oij j: ð18Þ
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Using Eqs. (12)–(14) with C ¼ p, a simple cal-

culus gives

o1j j ¼ sin 2dð Þj þ cos 2dð Þj and
o2j j ¼ sin 2dð Þj � cos 2dð Þj: ð19Þ
Assuming jo1j2 þ jo2j2 ¼ 1 and introducing Eqs.

(18) and (19) in Eq. (17) gives

De ¼ a12ð þ a22Þ cosð4dÞj j þ a21 sinð2dÞj
þ cosð2dÞj þ a11 sinð2dÞj � cosð2dÞj: ð20Þ

The azimuth standard deviation is therefore
minimal when cosð4dÞ ¼ 0 and therefore when

4d ¼ 90þ n� 180 (n an integer). These orienta-

tions correspond to an object wave polarization

orthogonal to one of the reference waves. The

maximum standard deviation occurs when

4d ¼ n� 180. An experimental data fit, plotted in

dashed line in Fig. 8(a) with a12 þ a22 ¼ 2:79,
a21 ¼ 1:53 and a11 ¼ 1:35, is well adapted for the
critical angles. But the model does not explain the

difference between the maximums that can be un-

derstood by a different quality of the reconstructed

amplitude contrasts.

The phase difference standard deviation pre-

sents peaks for the critical angles for which ran-

dom phase contrast is reconstructed for the

orthogonal polarized component. Therefore, the
phase difference has a high standard deviation.

Between the critical angles, imperfect optics, dust

and all noises expressed before give contributions

to the phase difference standard deviation seen on

the experimental reconstruction in Fig. 4. A

quality difference between the two reconstructed
phase images explains, as for the azimuth standard

deviation, the different minimal values between the

different critical orientations.
4. Conclusion

The estimation of errors made on calculated
holograms demonstrates that the method is able

to image and determine the SOP of an unknown

object wave with about 0.01� for the azimuth and

0.03� for the phase difference out of the critical

angles (when the object wave is polarized linearly

horizontally or vertically). Moreover, it allows

measuring the standard deviation limit introduced

by the algorithm on the SOP images: 0.12� for
the azimuth and 0.3� for the phase difference.

Then the experimental holograms show that the

method works well even if the errors are larger.

We have demonstrated that with an only one

image acquisition the method calculates the SOP

parameters with an error smaller than 1� for the

azimuth and smaller than 5� for the phase dif-

ference out of the critical angles. Set-up optimi-
zation, better optics and suppression of parasitic

interferences by use of a low coherence source for

example, would increase the precision. In con-

clusion, the method permits to record the spa-

tiotemporal Jones vector of a specimen with a

resolution time depending only on the CCD

camera acquisition time. Moreover, even the

spatial resolution in not yet very high, the intro-
duction of a microscope objective should allow a

spatial resolution smaller than 1 lm [10].
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