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In digital holographic microscopy, shot noise is an intrinsic part of the recording process with the digital
camera. We present a study based on simulations and real measurements describing the shot-noise
influence in the quality of the reconstructed phase images. Different configurations of the reference wave
and the object wave intensities will be discussed, illustrating the detection limit and the coherent
amplification of the object wave. The signal-to-noise ratio (SNR) calculation of the reconstructed phase
images based on the decision statistical theory is derived from a model for image quality estimation
proposed by Wagner and Brown [Phys. Med. Biol. 30, 489 (1985)]. It will be shown that a phase image
with a SNR above 10 can be obtained with a mean intensity lower than 10 photons per pixel and per
hologram coming from the observed object. Experimental measurements on a glass–chrome probe will be
presented to illustrate the main results of the simulations. © 2006 Optical Society of America
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1. Introduction

Digital holographic microscopy (DHM) is currently
undergoing important developments, causing its pop-
ularity to increase continually. Its success is due to its
capacity to extract both the amplitude and the phase
signal of the wavefront diffracted by an object from a
hologram recorded through a digital camera and to
provide three-dimensional (3D) quantitative phase
images. The principle of digital holography (DH) was
first proposed by Goodman and Lawrence1 and by
Kronrod et al. 30 years ago.2 At the beginning, holo-
grams were registered on photographic plates, but
the digital camera quickly became a more convenient
tool. In DH, the intensity distribution of the hologram
is processed by a digitally computed replica of the
reference wave, after which the amplitude and phase
distributions of the complex object wavefront are ex-

tracted simultaneously. Quantitative phase informa-
tion on the nanometer scale is easily achievable with
DH and can be extracted from a single hologram.3,4

The transverse resolution is diffraction limited, as
with classical microscopes, but axial resolutions of
half a degree have already been reached in a reflec-
tion geometry with the phase information DH pro-
vides. This corresponds to an axial resolution of
approximately 1 nm with a wavelength of 633 nm.
Numerous applications and developments based on
DH are now being developed. Among others, we can
mention DH applications in metrology,5,6 live cell
imaging,7,8 tomography of biological specimens,9,10

polarization and birefringence imaging,11,12 and ab-
erration compensation.13–15

Despite the large number of applications and re-
construction methods, to the best of our knowledge,
no systematic theory has been developed to quantify
the quality of the reconstructed phase images. The
most general statistical approach was conducted by
Goodman,16 but most developments were derived in
the field of speckle interferometry and are not imme-
diately applicable to the case of specimens with min-
imum roughness that are mostly investigated in
DHM (polished surfaces, clean biological prepara-
tions, and optical devices). Some studies on the noise
reduction were proposed for specific applications:
Monnom et al.17 have demonstrated improved visibil-
ity of the reconstructed intensity images by reducing
the noise due to out-of-focus objects, but the amelio-
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ration is not clearly quantified and the phase behav-
ior is not considered; Paganin et al.18 investigated the
effect of uniformly distributed noise during the acqui-
sition of the out-of-focus images required for their
amplitude-based phase-retrieving algorithm, the re-
sults being applicable only in their phase-sensitive
technique; De Ruijter and Weiss19 have discussed
extensively the detection limit in quantitative off-axis
electron holography, but their estimation of the phase
variance relies principally on the fringe visibility over
the hologram zone from which the phase is deduced,
and this estimation therefore only holds with smooth
phase variation. We propose here a general model for
image quality estimation based on the decision sta-
tistical theory proposed by Wagner and Brown.20 This
model is then applied in a study of the influence of
shot noise on the reconstructed phase images based
on simulations. We will establish the influence of the
repartition of the total intensity between the refer-
ence and the object beams and the influence of the
reference beam intensity for a given object beam in-
tensity. Experimental confirmation of the first simu-
lation will be given.

2. Theory

A. Simulations

Simulated holograms have been used to investigate
the behavior of the reconstructed phase images’
signal-to-noise ratios (SNRs). The main test object
used for simulations is a virtual object representing a
mouse neuronal cell, the shape of which has been
derived from an actual neuron imaged with DHM
presented in Fig. 1(a) (more details on DHM applied
to cell imaging can be found in Ref. 8). This test object
has been chosen to ensure a broad distribution of
spatial frequencies representative of a common im-
aged object. It is considered a pure phase object (i.e.,
no absorption) imaged in transmission, for which the
measured signal represents the phase shift induced
by the specimen, which is proportional to the optical
path length resulting from the integration of the re-
fractive index of the specimen along the optical axis.
The characteristics of this virtual object imaged in
transmission with a 63� microscope objective at a
wavelength of � � 633 nm are presented in Figs. 1(b)
and 1(c). The shape was schematized in order to sup-
press the noise due to the preparation containing the
neuron, but the broad distribution of spatial frequen-
cies was preserved.

The holograms are computed following the off-axis
geometry presented in Fig. 1(d). The complex wave-
front, resulting from the interaction of the illumi-
nation plane wave with our pure phase object, is
propagated along a distance d � 20 cm according to
the Fresnel approximation, to figure the acquisition
of a nonfocused complex field on the CCD camera.
The number of pixels considered for the object wave-
front and for the hologram is N � 512 � 512. The size
of the hologram and of the virtual object is 5.12 mm
� 5.12 mm, corresponding to the size of the real im-
age of a mouse neuron cell seen through a microscope

objective (63� magnification).8 The off-axis hologram
is obtained by computing the interference between
the propagated object wave and a plane reference
wave, whose propagation direction defines an angle
� � 0.7° with respect to the object wave propagation
direction. Then shot noise is introduced on the image
to simulate a real recorded intensity. The shot noise
follows a Poisson’s statistic6; i.e., the variance of the
number of photons hitting a single pixel of the detec-
tor equals the mean number of photons hitting this
pixel. The image is stored in an 8-bit image format,
considering an ideal detector, which can set the lower
intensity value to 0 and the maximum value to 255.

B. Processing the Hologram by the Convolution
Approach

The method used to process the simulated holograms
is based on the convolution approach described by
Schnars and Jüptner in Ref. 4. The main advantage
of this method is that the pixel sizes of the image and
of the hologram are equal. It is therefore convenient
to compute the SNR with the formula of Eq. (1) be-
cause the correspondence between a reconstructed
image point and the initial object point is straight-
forward. With the other classical Fresnel–Kirchhoff
integral reconstruction, described in Refs. 3 and 4,
a rescaling of the reconstructed image is necessary
for a pixel-to-pixel comparison, which can introduce
some additional numerical noise. As described in Ref.
21, the removal of the zero order and of the twin
image as well as the spatial filtering is performed by
applying a user-defined mask to the Fourier spec-
trum of the off-axis hologram.

The intensity distribution in the hologram plane
can be described by the following expression:

IH�x, y� � OO* � RR*Ç
zero order

� OR*Ç
real image

� R*OÇ
virtual image

, (1)

Fig. 1. (a) Real neuron phase image registered with DHM, (b)
virtual neuron phase image, (c) virtual neuron characteristics sum-
mary, and (c) schematic of the off-axis hologram simulation (prop-
agation of the wavefront on a distance d via the Fresnel integral):
O, object wave; R, reference wave.
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where O and R are, respectively, the interfering ob-
ject and reference. In classical holography, the recon-
struction of the wavefront is achieved by illuminating
the hologram with a replica of the reference wave.
The wavefront ��x, y� � R�x, y�IH�x, y� propagates
toward an observer, where the 3D image of the object
is reconstructed. In digital holography, the recon-
struction of the wavefront ��kx� , ly��, where x� and y� are
the pixel size of the CCD and k and l are integer
values, is obtained the same way by multiplying the
hologram intensity distribution IH�k, l� with a digi-
tally computed reference wave RD�k, l�, called the dig-
ital reference wave. Assuming a plane reference
wave, RD can be described as follows:

RD�k, l� � AR exp�i�kDxkx� � kDyly���, (2)

where kDx and kDy are the two components of the wave
vector in the hologram plane and AR is an ampli-
tude constant. The digitally reconstructed wavefront
��kx� , ly�� is first computed in the hologram plane x0y0
and can afterward be evaluated at any distance from
the hologram plane by the calculation of the scalar
diffraction of the wavefront in the Fresnel approxi-
mation. ��m��, n�	� is computed at a distance d
from the hologram plane, in an observation plane
O�	, by use of the following Fresnel propagation for-
mula:

��m��, n�	� � A
�m, n�FFT�1�FFT�RD�k, l�
� IH�k, l��p,q exp��i��d�p2 � q2���m,n,

(3)

where p, q and m, n are integers (�N�2 
 m, n
� N�2), FFT is the fast Fourier transform operator,
FFT�1 is the inverse fast Fourier transform operator,
A � exp�i2�d�����i�d� is a propagation constant, and

�m, n� � exp��i����d1�m2��2 � i����d2�n�	2� is
the so-called digital phase mask with parameters
d1 and d2 digitally adjusted to correct the phase ab-
erration due to the microscope objective. �� � x� and
�	 � y� are the sampling intervals in the observation
plane.

Considering only the virtual images of Eq. (1), the
propagated wavefront corresponding to the computed
digital reference wave is

� � RDR * O, with RD � exp�i�kDxkx� � kDyly���, (4)

where kDx and kDy are two parameters adjusted to
achieve identical propagation directions for R and RD.

Equation (3) requires the adjustment of four pa-
rameters for the proper reconstruction of the phase
distribution. kDx and kDy compensate for the tilt ab-
erration resulting from the off-axis geometry or re-
sulting from an imperfect orientation of the specimen
surface, which should be accurately oriented perpen-
dicular to the optical axis. d1 and d2 correct the wave-
front curvature induced by the microscope objective
according to a parabolic model. Note that in the

present study, these last two parameters only need to
be adjusted during the processing of real acquired
holograms because in the simulation no curvature
induced by the microscope objective was considered.
As explained in Ref. 3, the parameter values are ad-
justed in order to obtain a constant and homogeneous
phase distribution on a flat reference surface located
in or in the proximity of the specimen. The manual
procedure described in Ref. 3 has been implemented
here as a semiautomated procedure. First, the pro-
gram extracts two lines—a horizontal line along 0�
and a vertical line along 0�—whose location is de-
fined by the operator in the reference surface. Then
1D phase data extracted along the two lines are
unwrapped22 to remove 2� phase jumps, and a curve-
fitting procedure is applied to evaluate the un-
wrapped phase data with a 1D polynomial function of
the second order. kDx and d1 are iteratively adjusted
to minimize the deviation between the fitted curve
and the ideal horizontal constant profile. Similarly,
kDy and d2 are adjusted until the vertical profile is as
close as possible to the ideal vertical constant profile.
In general, less than five iterations are necessary to
reach optimal parameter values. If a reference area is
not available on the specimen, the parameters are
first calculated on another reference surface (air in
transmission, a mirror in reflection); then a simple
digital tilt adjustment of the phase, corresponding to
an adjustment of kDx and kDy, is performed with the
same procedure described above when the specimen
is observed.

Note that this digital adjustment method has been
generalized to a multiprofile automatic procedure with
a correction of the optical aberrations of the higher
order. An extensive description of the technique and its
applications to specimen shape compensation is pre-
sented in Ref. 15.

C. Signal-to-Noise Ratio of Phase Images

The SNR evaluation of an arbitrary image based on
the statistical decision theory, proposed by Wagner
and Brown,20 is calculated according to the following
expression:

SNR �

�� dfxdfy�F�S�x, y���2

	�� dfxdfy�F�S�x, y���2 W�fx, fy�

, (5)

where S�x, y� is the signal describing our image, F is
the Fourier transform, and W� fx, fy� is the Wiener
spectrum of the noise, expressed by

W�fx, fy� � lim
Lx,Ly→�

1
4LxLy


�
�Lx

Lx

dx �
�Ly

Ly

dy�S�x, y�

� exp��2�i�xfx � yfy��
2

, (6)
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where �S�x, y� is the absolute variation of S�x, y�
caused by the noise. This SNR provides an absolute
scale for image system performance assessment and
leads to instrumentation design goals and constraints
for imaging system optimization since no observer can
surpass the performance of the ideal observer. The
dependence of the detectable detail size on exposure or
imaging time follows immediately from the analysis
(see Ref. 20 for details). This expression assumes the
case of a quasi-ideal observer needing to determine
whether a well-known specific object described by
the function S�x, y� is present in the field of view: The
higher the SNR, the higher the object presence prob-
ability. A white noise is considered, even if the image
noise is colored. An extention of this theory to a per-
fect observer who does not have this limitation is
possible, and, in this case, the SNR expression pre-
sented here corresponds to the lower bound of the
extended SNR, i.e., the most pessimistic SNR value.

Complete a priori knowledge of S�x, y� is necessary
to measure the SNR with this expression to allow a
proper computation of the Wiener spectrum. This can
easily be performed with simulations, because the
image object is perfectly known, but can become dif-
ficult in real measurements.

D. Signal-to-Noise Ratio of the Hologram

To give a more intuitive description of the behavior of
the phase image SNR in some particular limit cases
described in Section 3, it is useful also to evaluate the
SNR of the hologram itself. When two waves inter-
fere, in our case, an object wave with intensity IObj
and a reference wave with intensity IRef, the intensity
of the interference pattern may be expressed as

Iinterference � IObj � IRef � 	IObjIRef cos���, (7)

where � is the phase difference between the two
waves. The maximal variation of the amplitude is
2	IObj IRef, as cos(�) can take values between �1 and 1.
In our study, the 8-bit detector is assumed to be per-
fect; i.e., the minimal intensity is set to 0 and the
maximal intensity is set to 255. The maximal signal
therefore corresponds exactly to the amplitude vari-
ation of 2	IObj IRef. For a given pixel on the hologram,
the maximal SNR value on the hologram can be ex-
pressed as

SNRholo �
2	IObjIRef

	IObj � IRef

, (8)

where the numerator is the maximal signal collected
on a given pixel, and the denominator is the corre-
sponding shot noise.

3. Results and Discussion

In what follows, the so-called total intensity repre-
sents the mean intensity diffracted by the object IObj
added to the reference wave intensity IRef. For the
simulations, the ideal function S�x, y� corresponds to

the phase function of the virtual neuron [see Fig.
1(c)], while the absolute variation �S�x, y� is calcu-
lated as the absolute difference between S�x, y� and
the phase of � [Eq. (4)], the actual phase signal re-
constructed from the hologram taking the shot noise
(Poisson’s statistic) into account.

A first simulation shows that, in the case of a
constant total intensity, a variation in the reparti-
tion of this intensity between the reference and the
object beam is followed by a variation of the recon-
structed image SNR. Figure 2(a) represents the
SNR curves as a function of the percentage of in-
tensity in the plane reference wave; the different
curves are obtained for different total intensities
expressed in the total number of photons per pixel
and per hologram, the values of which are shown on
the graphic. It can be observed that the SNR de-
creases abruptly at both graph extremities, when
almost the total intensity is concentrated in either
the reference or the object beam, i.e., when one of

Fig. 2. (a) SNR on the neuron phase image as a function of the
repartition of the total intensity between the two beams for differ-
ent total intensities, (b) SNR on Gaussian objects as a function of
the repartition of the total intensity between the two beams for a
different object radius, and (c) SNR on the neuron phase image as
a function of the object intensity for different reference intensities.
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the intensities tends to zero. This is easily under-
stood when calculating the limits of Eq. (8):

lim
IObj→0

SNRholo �
2	IObjIRef

	IObj � IRef

�
0

	IRef

� 0, (9)

lim
IRef→0

SNRholo �
2	IObjIRef

	IObj � IRef

�
0

	IObj

� 0. (10)

If the SNR of the hologram tends to be zero, it is
obvious that the SNR of the reconstructed phase im-
ages also becomes zero. In Fig. 2(a), it can be seen
that for a low total intensity, the SNR curve is sym-
metric with respect to the intensity distribution and
the maximal SNR value comes for an equal intensity
repartition in each beam: At lower intensities, the
SNR on the hologram is quite low and its maximum,
i.e., the maximum of the expression 2	IObj IRef, ap-
pears when both intensities are equal. Figure 2(a)
also shows that for an intensity close to the camera
saturation (camera saturation intensity is commonly
around 100,000 photons per pixel for a camera with a
gain of 1), the SNR maximum is clearly not centered
and one had better put more intensity in the refer-
ence beam to increase the SNR. This dissymmetry
discovered thanks to the simulation is more difficult
to understand intuitively. One interpretation can be
the following: The shot-noise perturbation on the ho-
logram for a given pixel depends on the total intensity
impinging on this pixel; if the intensity on each pixel
comes mainly from the reference beam that is uni-
form over the hologram, the shot-noise perturbation
on the hologram is much more uniform, and therefore
uniformly distributed in the spectrum of the holo-
gram, compared to a nonuniform noise distribution
following the object beam intensity, and consequently
the object spatial frequencies, in the case of a more
intense object beam. One must also note that the
maximum SNR value not only depends on the total
intensity but also depends on the complexity of the
object spectrum. To illustrate this fact, holograms
were generated with some Gaussian phase objects
characterized by a maximal phase value of � and an
adjustable width defined by R, the radius in number
of pixels taken at the FWHM value of the Gaussian
phase object. The curves, calculated for a total aver-
age intensity of 100,000 photons per pixel and per
hologram, are shown in Fig. 2(b); the different curves
correspond to the different values of R chosen. It is
clear that the SNR reaches greater values for broader
phase objects with a thinner spectrum. For broader
phase objects also, the shape of the curve is more
symmetric, due to the simpler form of the object and
its correspondent thin spectrum: For great values of
R, the broad Gaussian phase objects tend to resemble
a plane wave, making the system more and more
symmetric. The results of these first two simulations
should play a role of primary importance in the de-
sign of an experimental DHM setup, as one can usu-
ally distribute arbitrarily the intensity of the laser

source between the reference and the object beam of
the interferometer.

A second simulation presented in Fig. 2(c) shows the
SNR curves as a function of the intensity in the object
beam for a constant reference beam intensity; the dif-
ferent curves are obtained for different reference beam
intensities (also in mean number of photons recorded
per pixel and per hologram). This graphic illustrates
that for a given intensity of the object beam, it is pos-
sible to improve the reconstructed image SNR by sim-
ply increasing the reference intensity. This gain in
SNR is due to the coherent amplification of the object
beam by the reference beam during the hologram ac-
quisition. The maximum SNR improvement depends
on the intensity coming from the object, and no signif-
icant improvement can be observed below a mean
number of ten photons per pixel and per hologram. As
before, this saturation of the SNR is understood when
looking at what happens to the SNR of the hologram:

lim
IRef→�

SNRholo �
2	IObjIRef

	IObj � IRef

�
2	IRef 	IObj

	IRef 	IObj

IRef
� 1

� 2	IObj.

(11)

This limit calculation illustrates that the upper limit
of the hologram SNR is determined by the object
beam intensity only. It also shows that thanks to the
coherent detection, the SNR on the hologram is twice
as high as it would be with standard intensity image
detection.

The images presented in Fig. 3 show the evolution
of the reconstructed phase images for the neuron
with a decreasing SNR to illustrate how the degra-
dation of the image occurs.

To illustrate the results obtained with simulations,
some measurements on a glass–chrome probe were
made with a reflection DHM setup, schematically
shown in Fig. 4. The laser source used is a 635 nm
laser diode by Coherent, the camera is an 8-bit, black-
and-white, 512 � 512 pixel (9.47 �m size) Hitachi
CCD, and the microscope objective has a magnifica-
tion of 10� and a numerical aperture of 0.30. A

Fig. 3. Degradation of the reconstructed neuron phase image for
different SNR values.
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quartz–chrome binary grating was used as the test
object. Figures 5(a) and 5(b) resume the properties of
the specimen. This grating was chosen because its
Fourier spectrum is broad enough (high spatial fre-
quencies due to abrupt steps), and its simple precise
shape allows us to define an exact mathematical de-
scription of the grating to properly calculate the SNR
according to Eq. (5), which is much more complicated
if not impossible with mouse neurons because their
shape is not known a priori. Figure 6 resumes the
experimental realization of the first simulation, in
which the total intensity is constant, here approxi-
mately 20,000 photons per pixel and per hologram,
but the repartition of the intensity in the two beams
varies. Repartition was simply adjusted with the help
of the first ��2 combined with the polarizing beam
splitter. The asymmetry in the SNR curve with re-
spect to the intensity repartition observed in the sim-
ulation [Fig. 2(a)] is also clearly reproduced in the

experiment, confirming the advantage of putting
more intensity in the reference beam as in the object
beam to improve the SNR. Just to illustrate that im-
aging at very low object intensity is possible, as pre-
dicted by previous simulations, a phase image of the
glass–chrome specimen was taken with a diffracted
object intensity of 2.9 nW�cm2, corresponding approx-
imately to 170 photons per pixel and per hologram for
an integration time of 0.02 s. The SNR of this phase
image, shown in Fig. 5(c), is 9.9. Concentric circles
and parasitic fringes on the image are due to coherent
noise (multiple reflections of the beams on the optics
of the setup, especially the microscope objective) and
are much more limiting for low object intensity im-
aging than for shot noise in the presented setup. The
important readout noise of the CCD used is also a
strong limitation, so that imaging with a few photons
per pixel and per hologram becomes really difficult in
our case.

Even if the real measurements reproduce the sim-
ulation qualitatively well, a note needs to be made
about the numerical values reached by the SNR. As
already mentioned above, an exact numerical de-
scription of the object is required to compute the SNR.
The superposition of the numerical description of the
object and the reconstructed phase image of the ob-
ject was done with a maximal precision of one pixel.
The present DHM setup is subject to coherent noise
due to the large coherence length of the laser source:
Interference patterns, which were not considered in
simulations, appear on the hologram due to multiple
reflections on optical components in the system. Fi-
nally, our detector is, of course, not ideal: The dy-
namic range is manually adjusted, and the readout
noise is not negligible. This passage from the simu-
lated world to the real world therefore drastically
diminishes the highest values reached by the SNR,
but the behavior of the curves is preserved.

4. Conclusion

The SNR model, based on the decision statistical the-
ory, applied here to evaluate the behavior of DHM
phase images under the influence of the shot noise, is
a general tool for image quality estimation. Even if
its application on real phase images may be difficult,
owing to the required a priori description of the

Fig. 4. Schematic of the holographic microscope for reflection
imaging. NF, neutral-density filter; PBS, polarizing beam splitter;
BE, beam expander with spatial filter; ��2, half-wave plate; M,
mirror; BS, beam splitter; O, object wave; R, reference wave.

Fig. 5. (a) Glass–chrome specimen reflection DHM phase image
perspective, (b) specimen characteristics summary, and (c) specimen
phase image for an average illumination intensity of 2.9 nW�cm2.

Fig. 6. SNR of the glass–chrome probe phase image as a function
of the repartition of the total intensity between the two beams.
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object, it is readily adapted to studies based on sim-
ulations. Evaluations of important DHM processes,
involving reconstruction algorithms, filtering tech-
niques, and different noise models, can be envisaged
this way.

Results obtained during the present work with
simulations on total intensity repartition between
the reference beam and the object beam are directly
applicable to the experimental setup in order to re-
duce the shot-noise influence in reconstructed phase
images. For the first time, to our knowledge, it has
been demonstrated that in some cases a reference
beam with its intensity equal to the object beam in-
tensity is not the most favorable case regarding the
reconstructed phase image quality. The influence on
the phase signal SNR thanks to the object beam co-
herent amplification in digital holography has also
been illustrated for the first time.

This work has been supported by the Swiss National
Science Foundation (grant 205320-103885�1).
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