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The concept of numerical parametric lenses (NPL) is introduced to achieve wavefront reconstruction in digital
holography. It is shown that operations usually performed by optical components and described in ray geo-
metrical optics, such as image shifting, magnification, and especially complete aberration compensation (phase
aberrations and image distortion), can be mimicked by numerical computation of a NPL. Furthermore, we
demonstrate that automatic one-dimensional or two-dimensional fitting procedures allow adjustment of the
NPL parameters as expressed in terms of standard or Zernike polynomial coefficients. These coefficients can
provide a quantitative evaluation of the aberrations generated by the specimen. Demonstration is given of the
reconstruction of the topology of a microlens. © 2006 Optical Society of America

OCIS codes: 090.1760, 090.1000, 100.5070.
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. INTRODUCTION
igital holographic microscopy (DHM) permits the recon-

truction of the amplitude and the phase of an object
avefront from the acquisition of a single digital holo-
ram. The principle consists of digitizing—with a CCD or
ther type of image sensor such as a complementary
1084-7529/06/123177-14/$15.00 © 2
etal-oxide semiconductor (CMOS)—the interference be-
ween a reference and an object wave. Then, the wave-
ront is propagated from the hologram to the image plane
ithin the Fresnel approximation by a numerical process.
wo different numerical formulations are principally
sed: the single Fourier transform formulation (SFTF) or
006 Optical Society of America
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he convolution formulation (CF) (for SFTF and CF, see
ef. 1). For both formulations, several parameters must
e adjusted or calibrated2–4 to achieve a correct recon-
truction. Generally, the object wave contains aberrations
ncluding the tilt due to the off-axis geometry, the phase
urvature introduced by the microscope objective (MO)
sed to increase the spatial resolution, and all the optical
berrations of the setup. It has previously been deter-
ined that the wavefront curvature introduced by the
O and lenses can be successfully removed,3,5 as well as

pherical aberration,6 chromatic aberration,7

stigmatism,8,9 anamorphism,10,11 and longitudinal im-
ge shifting introduced by a beam splitter cube.12 Fur-
hermore, a recent paper demonstrates that an automatic
rocedure for performing the adjustment of parameters
ssociated with a standard polynomial model of aberra-
ions allows one to achieve a complete compensation for
hase aberrations in the image plane. This procedure can
e applied without prior knowledge of physical param-
ters of the setup including, e.g., wave vector components,
ocal lengths, and positions of the optical components.13

On the other hand, the two reconstruction formulations
FTF and CF each have several advantages and disad-
antages. In particular, within the framework of the
FTF, the scaling of the reconstructed region of interest

ROI) inside the reconstructed wave front is dependent on
he reconstruction distance, the pixel number of the holo-
ram, and the wavelength,14 whereas the CF allows a
caling-free reconstruction of the ROI if there is no chro-
atic aberration in the setup. Consequently, different so-

utions have been proposed to control the scaling in SFTF
o maintain the size of the ROI for a sequence of digital
olograms recorded at different distances and to solve the
roblem of superimposition in multiwavelength methods
or color holography,15–18 tomographic holography,19–25 or
ptical diffraction tomography.26 Ferraro et al. proposed
o control the scaling in SFTF by padding the holograms
ith zeros before the reconstruction.14 This approach has

he drawback of increasing the computational load be-
ause the number of hologram pixels is no longer a power
f 2. Indeed, the standard fast Fourier transforms are op-
imized to compute the Fourier transform in time
�N log N� instead of O�N2� with N=2n. Zhang et al. pro-
osed another method to keep the original pixel number
n SFTF.27 A two-stage reconstruction algorithm controls
he scale of the reconstructed image by placing between
he hologram and the image planes a numerical lens with
focal length and a position defined by the chosen scale.
he disadvantage of this method is the requirement of the
omputation of two propagations.

Finally, the curvature and the propagation direction of
he object wave are sensitive to the wavelength used if the
ptics are not completely achromatic; thus a different
cale and position of the ROI can also occur with CF.

We define in this paper a numerical parametric lens
NPL) placed in the hologram plane and/or in the image
lane that achieves a complete compensation for aberra-
ions (phase aberrations and image distortion) in SFTF or
F. The NPL shape is defined by standard or Zernike
olynomial models whose parameters are adjusted auto-
atically by a two-dimensional (2D) fitting procedure ap-

lied on specimen areas known to be flat instead of con-
idering one-dimensional (1D) profiles as presented in
ef. 13. We demonstrate that the Zernike polynomial
odel of the NPL achieves quantitative measurements of

pecimen aberration properties. Then we demonstrate
hat placing the NPL in the hologram plane has several
dvantages. First, the correction of the tilt in the holo-
ram plane allows an automatic centering of the ROI in
he image plane that avoids any aliasing in CF or in
FTF with small reconstruction distance. Second, the
omplete aberration compensation in the hologram plane
s preserved for any reconstruction distance.

We illustrate the technique by compensating for astig-
atism produced by a cylindrical lens used as a MO and

or high-order aberrations produced by a ball lens and a
eld lens introduced into the setup. Furthermore, chosen
hift and magnification operations are demonstrated in
F by automatic computing of NPLs in hologram and im-
ge plans with the advantages of maintaining constant
he original hologram pixel number and of using a unique
umerical propagation.

. EXPERIMENTAL SETUPS
igure 1 presents the optical setups of transmission [Fig.
(a)] and reflection [Fig. 1(b)] digital holographic micro-
copes. In both cases the basic architecture is that of a
odified Mach–Zehnder interferometer. The light source

epends on the targeted application: in Refs. 2 and 3 a
e–Ne laser is used; low coherence sources22 or a tunable

ource such as an optical parametric amplifier system28

an be used.
In both configurations, a MO collects the object wave O

ransmitted or reflected by the specimen and produces a
agnified image of the specimen at a distance d behind

he CCD camera. As explained in detail in Ref. 3, this
ituation can be considered equivalent to a lensless holo-
raphic setup with an object wave O emerging directly
rom the magnified image of the specimen and not from
he specimen itself.

In order to improve the sampling capacity of the CCD,
lens can be optionally introduced into the reference arm
L to produce in the CCD plane a spherical reference
ave with a curvature very similar to the curvature cre-
ted by the MO. At the exit of the interferometer, the in-
erference between the object wave O and the reference
ave R creates the hologram intensity

IH�x,y� = �R + O��R + O�* = �R�2 + �O�2 + R*O + RO*.

�1�

his hologram is digitized by a black and white CCD cam-
ra and then recorded on a computer. The digital holo-
ram IH�k , l� is an array of N�N (usually 512�512 or
024�1024) 8-bit-encoded numbers resulting from the
D sampling of IH�x ,y� by the CCD camera:

IH�k,l� =�
k�x−�x/2

k�y+�y/2�
l�y−�y/2

l�y+�y/2

IH�x,y�dxdy, �2�
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here k , l are integers, and �x, �y define the sampling in-
ervals in the hologram plane (pixel size). The different
erms of this hologram are the zeroth order of diffraction
�R�2+ �O�2�, the real image �RO*�, and the virtual image
R*O�. This hologram can be numerically filtered as
hown in Ref. 29 to produce a hologram containing only
he virtual image term

IH
F = R*O. �3�

We now introduce the NPL into the reconstruction pro-
ess. NPLs mimic pure phase objects and are defined as
wo arrays of unit-amplitude complex numbers �H and �I

laced respectively in the hologram �H� and image �I�
lanes. The numerically reconstructed wavefronts � are
lso computed in the SFTF or CF as follows:

ig. 1. Digital holographic microscope, (a) transmission and (b)
eflection setups. O object wave; R reference wave; BS beam
plitter; M1, M2 mirrors; MO microscope objective, RL lens in
he reference wave, OC condenser in the object wave. For dem-
nstration purposes a tilted plate is introduced between the BS
nd the CCD to intentionally produce aberrations. (c) Detail of
he off-axis geometry.
�SFTF�m,n� = �I�m,n�A exp� i�

�d
�m2��2 + n2��2��

� FFT��H�k,l�IH
F �k,l�

�exp� i�

�d
�k2�x2 + l2�y2��� , �4�

�CF�m,n� = �I�m,n�A � FFT−1	FFT
�H�k,l�IH
F �k,l��

�exp
− i��d�	k
2 + 	l

2���, �5�

here FFT is the fast Fourier transform; m, n, k, l are in-
egers �−N /2
m ,n ,k , l�N /2�; d is the reconstruction
istance; A=exp�i2�d /�� / �i�d�; � is the wavelength; 	k
k / �N�x�, 	l= l / �N�y� are the spatial frequency coordi-
ates; and �� and �� are the sampling intervals in the

mage plane defined as

�� = �� =
�d

N�x
. �6�

In SFTF, a scaling factor results between the hologram
ize and the reconstructed ROI defined by the scale fac-
ors � and given by

�� =
�x

��
=

N�x2

�d
, �� =

�y

��
=

N�y2

�d
. �7�

We should remark that the particular case of �H=R
nd �I=1 corresponds to the standard numerical expres-
ion of the Fresnel propagation.2

Let us define a NPL as an array of unit amplitude com-
lex numbers that can be defined by standard or Zernike
olynomials:

�S�m,n� = exp− i
2�

�
�

�==0

�+=o

P�m�m� , �8�

�Z�m,n� = exp− i
2�

�
�
�=0

o

P�Z�� , �9�

here P� and P� are the NPL parameters and o is the
olynomial order. The Zernike polynomials, further desig-
ated by Z�, are defined in Table 1 following the ZEMAX

lassification.30 We recall that the Zernike polynomials
re defined in a unit circle.
Now we represent the parametric numerical lenses in

he planes P=H,I as the multiplication of three different
enses used to shift (Sh), magnify (M), and compensate (C)
or aberrations with the polynomial model PM=S,Z:

�P = �S
P,Sh�S

P,M�PM
P,C. �10�

he numerical multiplication of these complex arrays is
chieved pixel-by-pixel and is therefore commutative.
owever, the procedure to define them is not. The appli-

ation order of the NPL is first to compensate for the ab-
rrations, then to do numerical magnification, and finally
o apply the numerical shift. But to simplify the explana-
ion, we present the different methods in the reverse or-
er.
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. PRINCIPLE OF AUTOMATIC
ROCEDURES

n Ref. 13, a simple procedure has already been presented
hat is performed in the image plane and permits adjust-
ent of the standard polynomial parameters P� by a 1D

east-squares fitting procedure applied to profiles ex-
racted from areas of the specimen known to be flat.
rawbacks of the 1D procedure are that the method is

imited to a standard polynomial model and requires the
se of a reference hologram (without specimen) to com-
ute the cross terms of the standard polynomial (as x�y,
,�0). We present here a more general and efficient 2D
tting procedure applied on specimen areas known to be
at. The fitting procedure is illustrated in the image
lane of a United States Air Force (USAF) test target ho-
ogram recorded with a reflection setup [see Fig. 1(b)]
here a tilted thick plate is introduced between the beam

plitter BS and the CCD camera in order to produce ab-
rrations.

In the assumed flat specimen area F defined by the mo-
aic of white rectangle on the surface [see Fig. 2(a)] N

Table 1. Zernike Standard Coefficients in ZEMAX

Classification

olynomial Cartesian Form Description

0 1 Piston

1 �4x Tilt x

2 �4y Tilt y

3 �3�2x2+2y2−1� Power

4 �6�2xy� Astig y

5 �6�x2−y2� Astig x

6 �8�3x2y+3y3−2y� Coma y

7 �8�3x3+3xy2−2x� Coma x

8 �8�3x2y−y3� Trefoil y

9 �8�x3−3xy2� Trefoil x

10 �5�6x4+12x2y2+6y4

−6x2−6y2+1�
Primary
Spherical

11 �10�4x4−3x2+3y2−4y4� 2ary Astig x

12 �10�8x3y+8xy3−6xy� 2ary Astig y

13 �10�x4−6x2y2+y4� Tetrafoil x

14 �10�4x3y−4xy3� Tetrafoil y

15 �12�10x5+20x3y2+10xy4

−12x3−12xy2+3x�
2ary Coma x

16 �12�10x4y+20x2y3+10y5

−12x2y−12y3+3y�
2ary Coma y

17 �12�5x5−10x3y2−15xy4

−4x3+12xy2�
2ary Trefoil x

18 �12�15x4y+10x2y3

−5y5−12x2y+4y3�
2ary Trefoil y

19 �12�x5−10x3y2+5xy4� Pentafoil x

20 �12�5x4y−10x2y3+y5� Pentafoil y

21 �7�20x6+60x4y2+60x2y4

+20y6−30x4−60x2y2

−30y4+12x2+12y2−1�

2ary Spherical

22 �14�30x5y+60x3y3+30xy5

−40x3y−40xy3+12xy�
3ary Astig y

23 �14�15x6+15x4y2−20x4

+6x2−15x2y4−15y6

+20y4−6y2�

3ary Astig x
pts
oints ��m ,�n� are selected 
��m ,�n��F�. The Npts mea-
ured phase values are converted to optical path lengths
OPL) Y��m ,�n� that satisfy the Npts following equations
epending on the model used [Eqs. (8) and (9)]:

Y��m,�n� = �
�==0

�+=o

a�S�, S� = �m
� �n

, �11�

Y��m,�n� = �
�=0

�=o

a�Z�, �12�

here �m and �n are computed from the pixel position
m ,n� to satisfy the condition that F is inscribed in the
nit circle and o is the polynomial order. Equations (12)
nd (11) define two linear systems with Npts equations
nd, respectively, a number of unknown coefficients o+1
nd �o2+3o+2� /2 (for example, for a second order of the
tandard polynomial the six unknown coefficients are a00,
10, a01, a20, a02, and a11). Because a great number of
oints can be selected in an image the system is always

ig. 2. Two-dimensional fitting procedure with standard poly-
omial model (left column) and Zernike polynomial model (right),

a) the reconstructed amplitude contrast with the assumed flat
reas F situated inside the white rectangles. (b) and (f) recon-
truction with initial parameters computed with 1D procedure.
c) and (g) 2D unwrap of (b) and (f), respectively (d) and (e) re-
pectively, the corrections with six and ten adjusted standard
olynomial coefficients �o=2,3�. (h) and (i) respectively, the cor-
ection with six and eight adjusted Zernike polynomial coeffi-
ients �o=5,7�.
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verdetermined. For example assuming 3% flat area in a
56�256 image, 1966 equations can be defined, for ex-
mple, to compute 28 unknown factors for o=6 in the
tandard polynomial model. These systems are solved by
omputing in the least-squares sense the solution of

M � AM = Y, �13�

here M=S, Z is the matrix of fitting polynomials in the
tandard or Zernike model, Y is the vector of the OPL
easured values Y��m ,�n�, and AM is the vector of the un-

nown coefficients a� or a�.
As already developed in Ref. 13, an iterative procedure

an be used to adjust the parameter vector PM:

PM
�i� = PM

�i−1� + AM
�i�. �14�

he NPLs for aberration compensation are therefore
iven by

�M
P,C = exp�− i

2�

�
PM · M� . �15�

bviously, this iterative procedure fails if there are phase
umps in the areas F due to initial NPLs parameters be-
ng too different from the optimal ones. Therefore a
imple first-step procedure consists of computing initial
arameters PM

�0� with a 1D fitting method13:

PS
�0� = 
0 P10

1D P01
1D P20

1D P02
1D� , �16�

PZ
�0� = �0

P10
1D

2

P01
1D

2 � , �17�

here P�
1D are the parameters adjusted by the 1D fitting

rocedure [see Figs. 2(b) and 2(f)].
The second step consists of performing a 2D unwrap on

he resulting reconstructed phase in order to suppress
ossible remaining phase jumps due to aberrations [see
igs. 2(c) and 2(g)].
Finally, the 2D fitting procedure is applied by increas-

ng the polynomial order when necessary. Figures 2(d),
(e), 2(h), and 2(i) present the reconstructed phase ob-
ained with the NPL adjustment in, respectively, the
tandard and Zernike polynomial models. The polynomial
rder used for Figs. 2(d) and 2(e) are, respectively, o=2
six parameters) and o=3 (ten parameters), and those
sed for Figs. 2(h) and 2(i) are, respectively, o=5 (six pa-
ameters) and o=7 (eight parameters).

. RESULTS
. Application to Quantitative Aberration Measurement
s already established in Ref. 13, the automatic adjust-
ent of NPL in the image plane can be used to compen-

ate for the specimen curvature. Here, we demonstrate
hat the Zernike polynomial model not only allows us to
ompensate for the curvature of the specimen but also
easures quantitatively the aberrations in term of
ernike coefficients. Figure 3 presents different represen-
ations of the same microlens recorded in a transmission
etup. The first step consists of compensating for the
etup aberration by applying the 2D fitting procedure in
he Zernike model on areas around the microlens where
he surface is known to be flat [areas shown by white lines
n Fig. 3(a)]. The resulting image allows a perspective
epresentation of the curvature induced by the microlens
n Fig. 3(b) by applying a 2D phase unwrap on the image
n Fig. 3(a). Now, the 2D fitting procedure applied in the
rea of the microlens [dashed white circle in Fig. 3(c)] al-
ows us to compensate for the specimen curvature. Figure
(c) corresponds to the adjustment of Zernike coefficients
p to Z9. The result of the adjustment of the next Zernike
oefficient Z10 is shown in Fig. 3(d). The “flattening” op-
ration performs better and reveals that this microlens
enerates important spherical aberrations (see Table 1).
inally, Fig. 3(e) shows that the increase of the polyno-
ial order up to Z20 does not provide a better aberration

ompensation.
Figure 4 summarizes the repartition of the aberrations

f the microlens. It shows an important astigmatism (Z4
nd Z5; more in direction y than x), a coma amplitude (Z6
nd Z7) equivalent in the two directions, a trefoil (Z8 and
) negligible in direction y, and finally an important pri-

ig. 4. Repartition of Zernike coefficients for an adjustment of
1 coefficients. The absolute coefficient values are plotted. Black
nd gray patterns indicate, respectively, negative and positive
alues.

ig. 3. (a) Microlens phase by applying 2D fitting procedure
ith Zernike polynomial on points included in areas indicated by
hite lines. (b) Perspective representation of 2D phase unwrap of

a). (c)–(e) Microlens shape compensation with Zernike formula-
ion with (c) 10 parameters, (d) 11 parameters, (e) 21 parameters.
9
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ary spherical aberration �Z10�. In addition the represen-
ation of the “flattened” microlens and the coefficient pa-
ameters provides a wealth of data on the microlens such
s surface topography, radius of curvature, lens height,
nd surface roughness.31

. Automatic Region of Interest Centering
s a result of the off-axis geometry of the holographic set-
ps, the carrier frequencies of the real or virtual images
re not in the center of the spectrum as presented in Fig.
(a). This results in a spatial separation of the different
iffraction orders during the reconstruction process.32 In
ur setups (Fig. 1), the object and reference waves propa-
ate, respectively, collinearly and with an angle � from
he normal vector to the hologram plane during the re-
ording process [Fig. 6(a)]. Let us consider now the wave-
ront reconstruction from a filtered hologram containing
nly a virtual image in two different ways.

The first way [Fig. 6(b)] corresponds to the reconstruc-
ion process with the digital reference wave outside the
resnel integral, as described in Ref. 13. In this case, the
econstructed wavefront in the hologram plane is R*O
nd propagates at an angle −�. The ROI is therefore
hifted in the image plane [see Fig. 7(a) with SFTF and
ig. 7(e) with CF].

ig. 5. Procedure of spectrum centering. (a) Initial filtered spec-
rum, (b) spectrum centered. The arrow represents the shift be-
ween the amplitude maximum of the frequencies associated
ith the virtual image and the center of the entire spectrum. (c)
pectrum of a hologram for which the curvatures of the reference
nd object waves are different, inducing a nonpunctual central
requency in the spectrum.

ig. 6. Principle of digital reconstruction process to center the
OI. (a) Hologram recording, (b) reconstruction with a digital

eference wave U=1 (the ROI is not centered), (c) reconstruction
ith a digital reference wave U=R (the ROI is centered).
The second way [Fig. 6(c)] corresponds to the optical re-
onstruction process with the reference wave R as illumi-
ating wave. Digitally this amounts to the same thing as
omputing Eq. (4) or (5) with �H,C=R. In this case, the
avefront in the hologram plane is O, which propagates
ormally to the hologram plane. Therefore, the ROI is
entered in the reconstructed wavefront.

The shift of the ROI in the first reconstruction method
s not convenient in CF because aliasing appears as pre-
ented in Figs. 7(e) and 7(f). In the case of SFTF, it may
ot be a problem if the scale factors defined in Eq. (7) are
ufficiently small to avoid any aliasing [Figs. 7(a) and
(b)]. But because these scale factors are inversely pro-
ortional to the reconstruction distance d, aliasing could
evertheless appear when d becomes too small (Fig. 8).
herefore for any formulation, it is more judicious to sup-
ress the shift or the ROI as presented in Figs. 7(g) and
(h) for CF and in Fig. 8(d) for SFTF with small recon-
truction distance.

The procedure to shift the ROI to the center can be
chieved with two methods. The first one, called spectrum
entering, consists of shifting the carrier frequency of the
irtual (real) image to the center of the filtered hologram
pectrum, applying an inverse Fourier transform of the
esulting spectrum, and then propagating the wavefront.

simpler procedure consists of detecting the position of
he amplitude maximum corresponding to the carrier fre-
uency of the virtual image [see Fig. 5(a)]. This position is
hen shifted to the center of the spectrum [see Fig. 5(b)].
his method has two main drawbacks. The first is that

he shifting amplitude is limited by the pixel accuracy.
he second concerns the central frequency spreading [see
ig. 5(c)] that results from a difference of curvature be-

ween the reference and object waves and makes the vir-
ual image carrier frequency impossible to center by a
imple maximum-amplitude detection.

We propose to compute automatically the tilt param-
ters P10

H,C and P01
H,C of �S

H,C by selecting profiles or areas
nown to be flat in the hologram plane and then proceed-
ng with the fitting procedure. Because the image in the
ologram plane is defocused flat areas would seem to be
ifficult to define. In fact, the contributions of the phase
iffraction pattern are averaged and are therefore negli-
ible if the selected profiles or areas are sufficiently far
rom the specimen. Figure 9 presents the hologram plane
hase image before [Fig. 9(a)] and after [Fig. 9(c)] the tilt
djustment and their corresponding image plane ampli-
ude [Figs. 9(b) and 9(d)] reconstructed in SFTF. In this
xample, the 1D procedure is applied to the selected black
rofiles of Fig. 9(a). The resulting phase curvature in
ig. 9(c) corresponds to the noncorrected curvature in-
uced by the MO. The ROI is centered in the image plane
Fig. 9(d)] and we have �H,C=R.

. Manual Shifting in Convolution Formulation
t may be interesting to shift the ROI manually in a spe-
ific region, for example, in order to compensate for a
pecimen translation between two hologram acquisitions.
or this purpose, we show how to define the shifting
PLs �H,Sh and �I,Sh in the CF. The procedure has three
rincipal steps. First, the operator draws two points de-
ning the desired shift (arrows in Fig. 10). The second
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tep consists of computing the parameters P10
H,Sh and P01

H,Sh

f �H,Sh. These parameters can be easily computed by con-
idering Fig. 11. Let us define the chosen shift in the two
irections by

�Sj = NSj�j, �18�

here j=x, y and NSj is the number of pixels to shift in the
direction. The shifting NPL is written as

�S
H,Sh�x� = exp�i

2�

�
Ŝx� = exp�i

2�

�
�Sxm�x + Syn�y�� ,

�19�

here Ŝ is the unit shift vector. The components of the
ector Ŝ are

ig. 8. Aliasing appears when the reconstruction distance is too
mall. (a) d=11 cm, (b) d=5 cm, (c) aliasing at d=3.3 cm. With
OI centering, the reconstruction (d) can be achieved without
liasing.

ig. 7. Comparison between SFTF [(a)–(d)] and CF [(e)–(h)], wit
g) are amplitude images and (b), (d), (f), (h) the corresponding p
Sj = sin��j� = sin�arctan�Sj

d �� . �20�

he parameters P10
H,Sh and P01

H,Sh are also

P10
H,Sh = − sin�arctan�Sx

d ���x,

P01
H,Sh = − sin�arctan�Sy

d ���y. �21�

bviously this shift introduced into the hologram plane
roduces a tilt in the image plane that should be compen-
ated for. We introduce therefore a predicted compensat-
ng shifting NPL in the image plane defined as

�S
I,Sh�m,n� = exp�− i

2�

�
�P10

I,Shm + P01
I,Shn�� , �22�

here P10
I,Sh=−P10

H,Sh and P01
I,Sh=−P01

H,Sh. Figures 10(c) and
0(d) show the shifted amplitude and phase reconstruc-
ions.

It is important to note that this shifting method is lim-
ted by the chosen shift and by the reconstruction dis-
ance. Indeed, the Nyquist sampling criterion requires
hat the highest spatial frequency introduced by the shift
hould be less than the cutoff frequency 1/ �2�x�. In other
ords, it means that the shifting angle � may not exceed

he maximum value �max given by

� � �max = arcsin �

2�x� . �23�

he shifting is also limited by Eq. (23), which gives the
nequality

(d), (g), (h)] or without [(a), (b), (e), (f)] ROI centering. (a), (c), (e),
econstructions.
h [(c),



F
�
m
=
n
t
t
N

c
c
i
i
p
p
e
a
s
c
p
i

D
W
c
t
p
p
t
p
o
p
t
t
p
r

T

t

w
c

F
t

F
p
t
t
t

F
a
T
s
reconstructions.

F
t x

3184 J. Opt. Soc. Am. A/Vol. 23, No. 12 /December 2006 Colomb et al.
arctan�Sj

d � � �max = arcsin �

2�x� . �24�

or example, with a sampling �x=6.7 �m, a wavelength
=633 nm, and a reconstruction distance d=1 cm, the
aximum number of pixels to shift is NSmax
d /�x tan
arcsin�� /2�x��=70.58 pixels. This limitation is
ot a problem, because the chosen shift is usually limited
o a maximum of a few dozen pixels and the reconstruc-
ion distance is also usually �5 cm, which corresponds to

Smax=352 pixels.
The automatic and manual shift methods are very effi-

ient in comparing or superposing different wavefront re-
onstructions that appear usually in different areas of the
mage plane. In particular, these methods are very useful
n polarization imaging with DHM33 in which two fringe
atterns are recorded on the same hologram. For this ap-
lication, two different orthogonal, polarization-state ref-
rence waves with two different propagation directions
re used in order to separate spatially the two recon-
tructed virtual images. The automatic and manual shifts
onstitute a very simple way to perform a subpixel super-
osition of the two wavefronts so as to compute the polar-
zation parameters.

. Numerical Magnification in Convolution Formulation
e propose here to adjust the magnification of the ROI by

omputing the parametric focal length of the NPL charac-
erized by �H,M and �I,M. This method keeps constant the
ixel number of the hologram and is based on a single
ropagation. Let us define the hologram plane H where
he NPL with focal distance f is placed, the original image
lane I defined by the reconstruction distance d (position
f the reconstructed virtual image), and the final image
lane I� defined by the reconstruction distance d�. By
hese definitions, the real object (having the same size as
he virtual image) is at a distance d from the hologram
lane. The magnification M is also calculated from the
eal object and image distances:

M = − d�/�− d� = d�/d. �25�

he lens equation gives

1/f = 1/�− d� + 1/d�. �26�

Let us define now the magnification NPL described by a
hin lens transmittance32 or from Eq. (8):

�H,M�m,n� = exp�i
2�

�

1

2f
�m2�x2 + n2�y2�� , �27�

�H,M�m,n� = exp�− i
2�

�
�P20

H,Mm2 + P02
H,Mn2�� , �28�

here P20
H,M=P02

H,M are the magnification parameters asso-
iated with the focal length of the lens:

P20
H,M = P02

H,M =
�x2

2f
. �29�

inally, with Eqs. (25), (26), and (29), the new reconstruc-
ion distance and the parameter PH,M can be computed
ig. 9. Adjustment of the tilt parameters of the NPL �H by ap-
lying 1D procedure along black profiles. (a) The initial phase in
he hologram plane, (b) the corresponding amplitude reconstruc-
ion in SFTF, (c) tilt-corrected phase in the hologram plane, (d)
he corresponding centered amplitude reconstruction.
ig. 10. Shifting procedure: (a) and (b) show, respectively, the
mplitude and phase reconstructions after tilt compensation.
he arrows define the chosen translation of the ROI. (c) and (d)
how the respective amplitude and phase shifted
ig. 11. H, hologram plane; I, image plane; �Sx, chosen shift in
he direction x; d, reconstruction distance; � , shifting angle.
 02
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rom M and the initial reconstruction distance d:

d� = Md, �30�

P02
H,M = P20

H,M =  1

M
− 1��x2

2d
. �31�

Obviously, as for the shifting method, the phase curva-
ure introduced in the hologram plane by the NPL has to
e compensated for in the new image plane I�. The pre-
icted compensation for the magnification NPL in the im-
ge plane is

�I,M�m,n� = exp�i
2�

�

1

2�f − d��
�m2�x2 + n2�y2�� , �32�

�I,M�m,n� = exp�− i
2�

�
�P20

I,Mm2 + P02
I,Mn2�� , �33�

here the parameters are

ig. 12. Amplitude and phase reconstructions are presented, re-
pectively, on the left and on the right. The reconstructions are
one from a hologram recorded with (a), (b) �1=480 nm; (c)–(f)
2=700 nm. The white rectangle defines the reference size. The
hite dashed rectangle defines the size of the same object with-

ut performing magnification. Images in (e), (f) are reconstructed
rom the same hologram as in (b), (c) after performing a magni-
cation procedure M=1.0038 defined by the ratio of the rectangle
izes.
P20
I,M = P02

I,M =
�x2�M − 1�

2M2d
. �34�

An example of application of this method is presented
n Fig. 12. Two different holograms of the same object
ave been recorded with two different wavelengths �1
480 nm [Figs. 12(a) and 12(b)] and �2=700 nm [Figs.
2(c)–12(f)]. We note that the size of the observed object is
ifferent because of the nonachromatic MO used in the
etup (difference between the dashed and solid white rect-
ngles). The ratio of the rectangle sizes defines a magni-
cation M=1.0038. The magnification procedure allows
s to achieve the scaled reconstruction presented in Figs.
2(e) and 12(f).
We can mention here that a different scaling in the two

irections can be done by applying two different magnifi-
ations in the corresponding directions.

The shifting and magnification procedure can be ap-
lied in the context of submicrometer optical tomography
y multiple wavelength DHM. The principle consists of
ecording several holograms at different wavelengths
typically 20 holograms with wavelengths between
80 nm and 700 nm) with a reflection digital holographic
icroscope. The reconstruction of these holograms and

heir processing allows tomographic imaging.34 An impor-
ant point for the tomographic reconstruction process is
hat the size of the ROI on each reconstructed image
hould be identical. Because of the presence of chromatic
berration and/or laser pointing changes for each wave-
ength, the reconstruction distance, the size, and the po-
ition of the ROI change as shown in Figs. 12(a)–12(d).
igure 13 compares the mean amplitude computed from

he 20 holograms [Figs. 13(a) and 13(b)] and the mapping
f it on the 3D topography of the specimen [Figs. 13(c) and
3(d)] when the magnification and the shift are either ap-
lied to all 20 superimposed, reconstructed images [Figs.
3(b) and 13(d)] or not applied [Figs. 13(a) and 13(c)]. We
an see clearly that the image in Fig. 13(a) is blurred
hereas that in Fig. 13(b) is not. The improvement of the
ethod is also visible in Fig. 13(d) where the noise on the

pecimen edges is clearly diminished.

. Complete Aberration Compensation
et us assume that the specimen does not introduce ab-
rrations but only a phase delay ��x ,y�. In the known flat

ig. 13. (a), (b) Mean amplitude reconstructed from 20 holo-
rams recorded with different wavelengths and (c), (d) mapping
f it on the 3D topography of the specimen. Images in (b), (d) are
rocessed with shift and magnification compensation.
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reas this term ��x ,y�=c (c a constant) for any plane, ne-
lecting the diffraction pattern due to the specimen in de-
ocused planes. The reference and object waves can be de-
ned more generally by introducing the respective phase
berration terms WR and WO:

R�x,y� = �R�exp
i�kxx + kyy��exp
iWR�x,y��, �35�

O�x,y� = �O�exp
i��x,y��exp
iWO�x,y��. �36�

hese phase aberration terms can be astigmatism, defo-
us aberration, spherical aberration, and so on. Here, we
ssume that the amplitude is not affected by the aberra-
ions. The filtered hologram of Eq. (3) becomes

IH
F = �R�O�exp
− i�kxx + kyy��exp
i�� + WO − WR��.

�37�

he method of suppressing the aberration term W=WO
WR consists simply of applying the 1D or the 2D fitting
rocedure on the filtered hologram phase. The adjustment
f the standard or Zernike polynomial parameters of �H is
chieved by considering the known flat areas in the holo-
ram plane.

We have already shown that the tilt adjustment in this
lane permits us to place the ROI in the center of the im-
ge plane [see Figs. 14(a)–14(c)]. By increasing the order,
t is possible to “flatten” the phase in the hologram plane
s presented in Fig. 14(d). Because of the compensation
or the curvature of the object wave, the NPL works also
s a magnification lens: The reconstruction distances with
r without NPL are different, consistent with the equa-
ions presented in Subsection 4.D.

In Fig. 14 the initial reconstruction distance is d
17.46 cm [Figs. 14(b) and 14(c)], the adjusted term P02

H

1.24558�10−10 provides a magnification M=0.5122, and
new reconstruction distance d=8.78 cm is used to recon-

truct Figs. 14(e) and 14(f). Because the reconstruction
as achieved in SFTF, no magnification of the ROI ap-
ears. It is important to note that no NPL is applied in
he image plane for the reconstruction of the images in

ig. 14. (a) Correction of the tilt in the hologram plane and re-
pective (b) amplitude and (c) phase reconstructions in SFTF at a
istance d=17.46 cm without NPL in image plane. (d) High-order
orrection in the hologram plane and respective (e) amplitude
nd (f) phase reconstruction at a distance d=8.78 cm. The correc-
ion in the hologram plane is preserved along the direction of
ropagation and a numerical lens is no longer necessary in the
mage plane.
igs. 14(c) and 14(f). We see that the correction in the ho-
ogram plane avoids the utilization of the NPL in the im-
ge plane for any reconstruction distance. Indeed, the
erm �HIH

F is similar to a plane wave modulated by the
hase delay induced by the specimen. The propagation of
his plane wave therefore conserves a constant phase
alue in the areas known to be flat, and the phase aber-
ations are also corrected for any reconstruction distance.

. APPLICATIONS AND DISCUSSION
. Compensation for Astigmatism Induced by a
ylindrical Lens
rilli et al. present theoretically the potentialities of
HM for astigmatism evaluation and compensation.9

urthermore, De Nicola et al. present a method with two
ifferent reconstruction distances to achieve astigmatism
ompensation.10 Here we demonstrate experimentally
hat astigmatism introduced by a cylindrical lens can be
ompensated for by a NPL in the hologram plane only.
his cylindrical lens is introduced in a reflection setup in

he place of the MO [see Fig. 1(b)]. Figure 15 presents the
ologram of a USAF test target recorded with this setup.
he fringe pattern is unusual and corresponds to the in-

erference between an ellipsoidal wave and a plane wave.
Figure 16 presents the amplitude reconstruction with

FTF along the z direction for different reconstruction
istances. Because of astigmatism of the cylindrical lens,
here are two partial focal points, one for each direction,
ocalized at d=� and d=5.5 cm (the amplitude reconstruc-
ion shows a vertical line). The image is almost focused at
=23.3 cm as also shown on Fig. 17(b). This astigmatism
an be revealed better by using CF. Because aliasing ap-
ears in CF [Fig. 17(a)] because of a larger magnification
f the cylindrical lens in the horizontal direction, a nu-
erical magnification M=0.3 is applied; the results can

ig. 15. Hologram of USAF test target recorded with a cylindri-
al lens as MO.
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e observed in Fig. 17(c). The inset in Fig. 17(c) shows
learly that the vertical edges of the USAF step are not
ocused.

Let us define a new NPL written �H,A that is dedicated
o astigmatism compensation and defined by two second-
rder standard polynomial coefficients P02

H,A and P20
H,A. Fig-

res 17(d) and 17(e) present, respectively, the compensa-
ion for this astigmatism by the manual adjustment of

20
H,A=0.11�10−10�P02

H,A=0� and by the adjustment of two
econstruction distances d1=6.99 cm and d2=7.92 cm as
xplained in Ref. 10. We can see in the insets that the two
ethods correct the astigmatism very well, but there is a

ery small difference between the ROI sizes: The image in
ig. 17(e) is larger in the horizontal direction.

ig. 17. Amplitude reconstruction with different parameters,
a) CF, M=1, d=23.3 cm; (b) SFTF, d=23.3 cm, (c) CF, M=0.3, d
6.99. The astigmatism shown in detail in (c) is compensated by

d) the adjustment of P20
H,A=0.11�10−10 or by (e) defining two re-

onstruction distances d1=6.99 cm and d2=7.92 cm.

ig. 18. (a) Phase reconstruction with P20
H,A=0.11�10−10 with-

ut �I,C; the other images are compensated with �I,C, (b) P20
H,A

0, (c) P20
H,A=0.11�10−10, and (d) two reconstruction distances.

he black lines have the same length and reveal a dilatation in
he image in the horizontal direction for (d).

ig. 16. Amplitude reconstruction for different distances of re-
onstruction. Because of the astigmatism of the cylindrical lens,
here are two different focal points located at d=5.5 cm and d
�. The reconstructed image is focused at d=23.3 cm.
Figure 18 reveals that the two astigmatism compensa-
ions used for the amplitude image are not sufficient to
ompensate for the other phase aberrations if no NPL is
pplied in the image plane [see Fig. 18(a)]. Therefore, the
PL �I,C is adjusted in the image plane for the different

ases of astigmatism correction: Fig. 18(b) without correc-
ion, Fig. 18(c) with P20

H,C=0.11�10−10, and Fig. 18(d) with
wo reconstruction distances. One should note that the
PL method preserves the geometry [the step length is

qual between Figs. 18(b) and 18(c)], whereas this is not
he case for the two-reconstruction-distance technique of
ig. 18(d).
Finally, we compare the two astigmatism compensation
ethods when the 2D fitting procedure is applied in the
ologram plane to adjust �S

H,C. It is also important to re-
ark that, as established for the magnification method,

he introduction of �H,A when �H,C has already been ad-
usted introduces a phase curvature in the image plane
hat can be compensated with the predicted NPL �I,A in
he image plane with P20

I,A or P02
I,A computed from Eqs. (31)

nd (33):

P20
I,A =

�x2

��x2/2P20
H � − d

. �38�

Figure 19 presents the phase image in the hologram
lane before [Fig. 19(a)] and after [Fig. 19(b)] the 2D fit-
ing procedure for �S

H,C. The “flattening” operation in the
ologram plane increases the astigmatism as presented

n Figs. 20(a) and 20(b). Indeed, two very different recon-
truction distances allow focus along the horizontal [Fig.
0(a), d=13.3 cm] or vertical direction [Fig. 20(b),
=−6.9 cm]. The astigmatism is therefore compensated
y the two-reconstruction-distance method [Fig. 20(c)] or
y the adjustment of �H,A for the cases of two reconstruc-
ion distances: Fig. 20(d) corresponds to d=−7.1 cm,

02
H,A=−4.7�10−10 and Fig. 20(e) to d=7.95 cm, P20

H,A=4.7
10−10.
In short, we show that the two astigmatism compensa-

ion methods are not equivalent in terms of geometry con-
ervation. Indeed, the two-reconstruction-distance
ethod deforms the reconstructed images, whereas this is
ot the case with our method. Furthermore, our method

nvolving aberration compensation in the hologram plane
chieves astigmatism compensation for the amplitude
nd phase images for any reconstruction distances. These

ig. 19. Phase image in hologram plane: (a) without �S
H,C ad-

ustment, (b) after adjustment of standard polynomial order o
3. The straight black lines define the profiles used to set the ini-

ial values of 2D fitting parameters, and the curved white lines
elimit the areas excluded from the areas known to be flat.
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esults show that a cylindrical lens can be used advanta-
eously instead of a MO to study specimens with different
haracteristic length and width such as optical fibers or
aveguides.

. Ball Lens as Microscope Objective
o illustrate further the different techniques of aberration
ompensation, we introduce a ball lens (Edmund ball lens
F8 of 2 mm diameter, n=1.689) as MO and a field lens
etween the BS and the CCD camera in a transmission
etup [Fig. 1(a)]. The positions of the ball lens, the field
ens, and the CCD are adjusted to produce very strong ab-
rrations. A liquid of index n=1.6 is used as immersion
uid. The specimen is a USAF test target. Figure 21 pre-

ig. 20. Amplitude (left) and phase (right) reconstructions after

S
H,C adjustment: (a) d=13.3 cm, (b) d=−6.9 cm, (c) d1=13.3 cm
nd d2=−6.9 cm, (d) M=0.56 �d=−7.1 cm� and P02

H =−4.7�10−10,
e) M=0.56 �d=7.95 cm� and P20

H =4.7�10−10.
ents the comparison between different methods of aber-
ation compensation. In the first column, only the tilt is
ompensated for in the hologram plane. It is evident that
berrations are introduced by the ball lens that deforms
he USAF test target [Figs. 21(b) and 21(c)]. Furthermore,
he NPL applied in the image plane does not succeed in
orrectly “flattening” the phase image. In the second col-
mn, a seventh-order standard polynomial 2D fitting is
pplied to the hologram. The correction of distortion is
ood, and the phase aberrations are well compensated.

The residual distortion comes from the nonexact as-
umption of a nonaberrated amplitude of the reference
nd object waves. Indeed, some part of the phase aberra-
ions introduced by the ball lens and/or the field lens is
onverted to amplitude aberrations by the optical propa-
ation of the wave in the path of the ball lens, the field
ens, and the CCD camera. Because the NPL compensates
nly for phase aberrations in the hologram plane, the re-
idual amplitude aberrations in the hologram plane are
ot compensated for by the automatic adjustment. This
esidual amplitude aberration in the hologram plane is
onverted to distortion in the image plane as shown in
igs. 22(b) and 22(c).

ig. 21. (a)–(c) The correction of the tilt is done in the hologram
lane, and the aberration compensation is performed in the im-
ge plane. (d),(e) Compensation with �S

H,C with seventh-order
tandard polynomial 2D fitting. (a), (d) Hologram, plane phase
mages. (b), (e) and (c), (f), respectively, amplitude and phase im-
ges in the image plane. The image distortion clearly visible in
b), (c) is compensated in (e), (f).
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To overcome this residual distortion, a NPL could be
laced in the plane where the aberrations are introduced,
r in other words in the plane where there are phase-only
berrations. We do not treat this solution further for two
easons. First, it is not evident that such a plane exists,
ecause the aberrations are produced by different optics
here principally by the ball lens and the field lens, but
he other optics do contribute also). Second, even if this
lane existed and its position could be defined, two nu-
erical propagations would need to be performed to re-

onstruct the corrected wavefront (from the hologram
lane to the phase-only aberration plane and then from
he phase-only aberration plane to the image plane), and
hat would not be suitable in terms of time-consuming re-
onstruction.

To keep to a single numerical propagation, the distor-
ion compensation is applied in the hologram plane by ad-
usting manually the NPL parameters to minimize the
istortion in the image plane. In Fig. 22(d), the primary
pherical term parameter of the NPL �Z

H,C is adjusted
Z10=9.83�10−7� to compensate for the distortion [see
igs. 22(e) and 22(f)] that is not yet totally compensated

or by the 2D fitting procedure method [see Figs. 22(b)

ig. 22. (a)–(c) Compensation with �S
H,C with eighth-order stan-

ard polynomial 2D fitting; (d)–(f) after adding manual adjust-
ent of primary spherical Zernike term Z10=9.83�10−7 and a

ompensation of the resulting phase deformation in the image
lane by an automatic adjustment of �S

I,C (six orders). (a) and (d)
how the hologram plane phase image; (b), (e) and (c), (f), respec-
ively, show the amplitude and phase images in the image plane.
he image distortion clearly visible in (b), (c) is totally compen-
ated in (e), (f).
nd 22(c)]. We note that the introduced phase term in the
ologram plane [see Fig. 22(d)] produces a phase defor-
ation in the image plane that is compensated automati-

ally by a sixth-order NPL �S
I,C as presented in the phase

mage [see Fig. 22(f)].

. CONCLUSION
e have presented in this paper numerical methods to

ompensate for all aberrations. Classically, aberrations
re minimized by use of different well-designed optical
omponents placed successively in the optical path. Our
echnique is similar but has the advantage of using a
aximum of two numerical parametric lenses placed in

he hologram and in the image plane. Furthermore, we
emonstrated that these numerical lenses can be com-
uted to achieve a numerical magnification and shift of
he region of interest. This last feature gives us the ability
o compensate for chromatic aberrations, the scaling com-
ng from different reconstruction distances, and the speci-

en shift that can occur between two hologram acquisi-
ions.

In addition, the technique has the advantage of mini-
izing the number of parameters that should be adjusted

y the operator. Indeed, automatic fitting procedures
howed that phase aberrations and image distortion can
e suppressed, in particular with the compensation for
berration introduced by the use of a cylindrical lens or a
all lens as MO. This feature allows low-cost setups that
ould be constructed with inexpensive optical components
hat produce aberrations.
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