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Summary

The point spread function is widely used to characterize
the three-dimensional imaging capabilities of an optical
system. Usually, attention is paid only to the intensity point
spread function, whereas the phase point spread function is
most often neglected because the phase information is not
retrieved in noninterferometric imaging systems. However,
phase point spread functions are needed to evaluate phase-
sensitive imaging systems and we believe that phase data can
play an essential role in the full aberrations’ characterization.
In this paper, standard diffraction models have been used for the
computation of the complex amplitude point spread function.
In particular, the Debye vectorial model has been used to
compute the amplitude point spread function of ×63/0.85
and ×100/1.3 microscope objectives, exemplifying the phase
point spread function specific for each polarization component
of the electromagnetic field. The effect of aberrations on the
phase point spread function is then analyzed for a microscope
objective used under nondesigned conditions, by developing
the Gibson model (Gibson & Lanni, 1991), modified to compute
the three-dimensional amplitude point spread function in
amplitude and phase. The results have revealed a novel
anomalous phase behaviour in the presence of spherical
aberration, providing access to the quantification of the
aberrations.
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This work mainly proposes a method to measure the complex
three-dimensional amplitude point spread function of an
optical imaging system. The approach consists in measuring
and interpreting the amplitude point spread function by
evaluating in amplitude and phase the image of a single
emitting point, a 60-nm-diameter tip of a Near Field Scanning
Optical Microscopy fibre, with an original digital holographic
experimental setup. A single hologram gives access to the
transverse amplitude point spread function. The three-
dimensional amplitude point spread function is obtained
by performing an axial scan of the Near Field Scanning
Optical Microscopy fibre. The phase measurements accuracy
is equivalent to λ/60 when the measurement is performed in
air. The method capability is demonstrated on an Achroplan
×20 microscope objective with 0.4 numerical aperture. A
more complete study on a ×100 microscope objective with 1.3
numerical aperture is also presented, in which measurements
performed with our setup are compared with the prediction of
an analytical aberrations model.

1. Introduction

1.1. Theory

Among the techniques available nowadays to characterize
an optical imaging system, the point spread function (PSF)
takes an important place. In the PSF approach, the object is
decomposed into infinitesimal point sources and the image
is determined as the superposition of the field distribution
corresponding to each point-source object. The complex field
distribution, corresponding to such a point-source object, is
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defined as the amplitude point spread function (APSF) of
the system, whose modulus squared gives the intensity or
irradiance point spread function (IPSF) and whose phase gives
the phase point spread function (PPSF). Usually, attention
has been paid mainly on the IPSF, but the relevance of
the PPSF has grown with the development of coherent or
partially coherent microscopy techniques that allow phase
measurements, including standard interferometric techniques
(Mach-Zehnder, white-light, Linnick, etc.). In particular,
the development of digital holographic microscopy (DHM)
necessitates a thorough determination of APSF. Numerous
studies have been performed to compensate for the phase
aberrations inherent to coherent optical systems, mainly
without a priori knowledge of either them or further theoretical
analysis (see, e.g. Colomb et al., 2006 which present a new
aberrations compensation procedure, conjointly with a review
of existing techniques). An appropriate understanding of
phase aberrations, based on systematic theoretical analysis of
the PPSF, may provide innovative aberrations compensation
methods, from which the coherent imaging techniques
like DMH will take advantage. Hanser et al., and Braat
et al., have recently demonstrated the interest of theoretical
PPSF, respectively, by characterizing a wide-field fluorescence
microscope through its phase-retrieved pupil functions based
on intensity measurement (Hanser et al., 2004), and by
retrieving the aberration function of high-NA optical systems
with the so-called extended Nijboer–Zernike approach (Braat
et al., 2003). In their respective measurement of a lens APSF,
Walford et al. (2002) and Dändliker et al. (2004), have shown
how phase singularities, characterized by a phase jump of
±π on a closed path around the singularity (

∮
dϕ = ±2π )

play a role in aberrations identification. The study of their 3D
conformation has been shown to be closely correlated to the
presence and type of aberrations.

The theoretical models used in calculation of the PSF of a lens
are based on the diffraction theory. Integral expressions have
been developed to compute the 3D diffraction pattern resulting
from the diffraction of a circular aperture. A comprehensive
review has been given by Gibson (Gibson & Lanni, 1989).
They include scalar wave models for both on- and off-axis point
sources, based on paraxial approximation. Similarly, vectorial
models based on the electromagnetic field theory have been
developed (Richards & Wolf, 1959), but for all models attention
was paid essentially to the intensity distribution and the phase
was generally not considered. Linfoot & Wolf (1956) gave a
first detailed description of the 3D phase distribution near
the focus of an aberration-free lens, by using the Lommel’s
functions to evaluate the diffraction integral. Based on the
scalar diffraction theory, Farnell (1957) calculated the phase
in the image region of a microwave lens and verified also his
predictions by experimental measurements (Farnell, 1958).
A more efficient way to calculate the intensity and phase
distributions near the focus was obtained later by the recourse
to fast Fourier transform. This may be applied in the Fraunhofer

approximation where the diffraction integral can be viewed as
a Fourier transform of the pupil function (Born & Wolf, 1980;
Selligson, 1981; Mills & Thompson, 1986).

An optical system can hardly be totally aberration free.
Even if primary optical aberrations are well corrected, as in
a high quality and expensive microscope objectives (MOs),
aberrations can still result from residual misalignment and
slight imperfections of the optics. But more often, they are
caused by their inappropriate use in nondesigned conditions
such as inadequate cover slip thickness, cover slip refractive
index or immersion oil refractive index. They can even arise
from the specimen under investigation, generally because of
focusing media refractive index mismatch. The aberrations
theory has been addressed by many authors (see, e.g. Born &
Wolf, 1980). The occurrence of aberrations when a MO is used
under inappropriate conditions has been analyzed in detail
by Gibson (Gibson & Lanni, 1991), who proposed a simple
model, based on the scalar diffraction theory and geometrical
optics calculations, in order to quantify these aberrations.
The same problem, that is, the focusing through dielectric
interfaces with different thicknesses and refractive indices, has
been treated in a general context by Török (Török & Varga,
1997; Török, 1998), who developed a rigorous model based on
the vectorial theory. Recently, Haeberlé combined the Gibson
and the Török models and formulated a very accurate and
easy-to-use expression for conventional microscopy (Haeberlé,
2003). All these papers predict only the aberrated IPSF and
only few works present the PPSF in the presence of primary
aberrations (Selligson, 1981; Mills & Thompson, 1986), for
low and moderate NA systems.

In coherent microscopy, DHM in particular, a variety of
irradiation schemes may be considered: collimated beam
(plane wave), as well as focussed beam (spherical wave). We,
therefore focus, in the present paper, on the main component
of the microscope which is the MO, lead by the idea of obtaining
valuable information in amplitude and phase for a later use in
aberrations compensation in DHM. Calculation results of both
the IPSF and the PPSF are given in the presence of aberrations
for high NA MO in some selected cases. A more complete
and systematic review of the phase behaviour for each type
of aberration has been carried out by Marian (2005).

1.2. APSF measurement techniques

Usually the PSF is measured by acquiring images of small
fluorescent beads with diameter under the instrument
resolution limit (Gibson & Lanni, 1991). This method was
successfully applied, for the measurement of the axial PSF
intended to be used in deconvolution and optical sectioning
microscopy (Gibson & Lanni, 1991). The main drawback
of this experimentally measured PSF is the low signal-to-
noise ratio resulting mainly from the shot noise due to the
low-intensity signal provided by such small objects. On the
other hand, the PSF is measured on a separate setup, under
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nondesigned optical conditions of the microscope, which can
be quite different from the experimental imaging conditions. In
additiontotherequiredpresenceofsmallandisolatedstructure
in the sample, the accuracy of the method decreases under deep
specimen imaging conditions.

Anyway, all these measurements only take into account
the IPSF, neglecting the phase which can play an essential
role, for example, in quantifying the aberrations present in the
system to completely characterize a lens or a MO. Selligson
(1981) proposed already, a method based on a Mach-Zender
interferometer, allowing measuring the IPSF and PPSF of
lenses subjected to classical aberrations. However, his method
requires a point-to-point scan of the focal region and was
quite slow at that time, taking up to 20 min for a grid of
32 × 32 points and, therefore, needing a carefully stabilized
measuring system. Schrader (Schrader & Hell, 1996), Juskaitis
(Juskaitis & Wilson, 1998) and Walford (Walford et al., 2002)
also proposed to record an interference image of a point object,
but several images are necessary to reach this goal and a 3D
scan of the focal region is also required. Another approach
consists of evaluating the complex wavefront at the exit
pupil of the MO: Beverage used a Shack-Hartmann wavefront
sensor to directly measure the pupil function combined with a
Fourier transform calculus to recover its PSF (Beverage et al.,
2002) and Törok used a Twyman-Green interferometer for
measurement and the Debye–Wolf diffraction theory to predict
the complex APSF (Török & Fu-Jen, 2002). It is also possible to
retrieve the phase from intensity measurements only: Hanser
(Hanser et al., 2004) obtained the complex pupil function from
defocused IPSF images of subresolution beads with a phase-
retrieval algorithm, whereas Braat et al. (2003) retrieved
the aberration function of high-NA optical systems with
the so-called extended Nijboer–Zernike approach. Dändliker
et al. (2004) measured the APSF of a microlens with a
Mach-Zehnder interferometer modified to obtain high spatial
accuracy. The microlens is illuminated by a plane wave and
movedthree-dimensionallyisthesystemtorecordthe3DAPSF,
requiring, therefore, no subresolution object.

We propose here an experimental setup, capable to measure
the 3D complex APSF of a first-degree optical system, like a
simple lens or a complex MO. The method is derived from digital
holography, specifically from DHM, where a MO is inserted
in the object arm of an off-axis holographic setup (Cuche
et al., 1999). The DHM allows to measure the transverse
IPSF and PPSF from a single recorded hologram, whereas
at least three images are required with a common phase-
shifting techniques used, for example, by Selligson (1981) or
Dändliker et al. (2004). The axial IPSF and PPSF are obtained
by performing a fast nanometre step z-scan within a range of
tenths of micrometres and acquiring the corresponding stack
of holograms at video rate. The originality of the method lies in
its capacity to record the full 3D APSF from a rapid 1D z-scan,
minimizing, therefore, the noise contribution from external
perturbations during the measurements. The scanning rate is

currently limited by the charge coupled device (CCD) frame
rate (25 Hz), and could be drastically improved with a faster
CCD. The integration time for a single hologram is in the
millisecond range with the current 100 mW laser source.
To assess accurate estimation of the axial PPSF, the temporal
stability of the system during the holograms stack acquisition
is monitored thanks to a second holographic setup inserted in
the system.

2. Theoretical models for the calculation
of the ideal 3D APSF

Different methods can be used to evaluate the diffraction
integral and, therefore, to calculate the 3D APSF of a first-order
optical system, where the optical system could be a simple lens
as well as a MO represented by its equivalent lens. For example,
in the scalar Debye theory, based on the Debye approximation
(see Gu, 2000), the field in the focal plane U (P2) is expressed
as a superposition of plane waves of different propagation
directions �s within the solid angle � subtended by the lens
(see Fig. 1):

U (P2) = i
λ

∫ ∫

�

P (P1) exp [iϕ (P1)] exp (−i k�s · �r2) d�,

(1)

where P (P1) represents the apodization function in the lens
plane (Innes & Bloom, 1966; Gu, 2000), �r2 gives the position
of the observation point in the focal plane, λ is the wavelength
and k is the wavenumber defined as k = 2π

/
λ exp [iϕ (P1)],

corresponding to the phase aberration function in the pupil
plane, may be developed in terms of standard polynomials or
Zernike polynomials to distinguish the contribution of each
aberration type (spherical, coma, astigmatism, etc.). In this
equation, as well as in the rest of the paper, the time dependence
of the field exp (−iωt) has been implicitly assumed.

The Debye theory combines in this way the geometrical
and the wave optics, because all the individual plane waves

Fig. 1. Scalar Debye theory: focusing of a spherical wave through a lens
of focal f , half-aperture a, maximum subtended half angle α.
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can be seen as corresponding to the optical rays from the
geometrical optics. The Debye integral generally is valid for
Fresnel numbers much larger than unity (Wolf & Li, 1981)
and in addition, the observation point must be close to the
optical axis, especially when aberrations are present in the
system (Sheppard, 2000). Within the paraxial limit sin θ ≈ θ

(Fig. 1), the scalar Debye theory can be consequently simplified,
leading to an expression similar to that obtained in the Fresnel
approximation (Gu, 2000). A comparison between these two
theories (Marian, 2005) shows that significant discrepancies
appear if a higher NA is considered (above 0.65). The two
models yield comparable results for lower NA, with an easier
implementation and a reduced calculation time if the paraxial
model is used.

The Debye theory can be generalized in a vectorial
form, by taking into account the vectorial nature of the
electromagnetic field and the polarization state of the incident
field (Ignatowsky, 1919; Richards & Wolf, 1959; Luneburg,
1966).Thesimulationspresentedherearebasedonthistheory.
The advantage of using the vectorial theory as a first choice is
the accuracy in predicting specific features of high NA systems
such as apodization and depolarization effects (Gu, 2000), or
symmetry break in the focal point (Dorn et al., 2003).

We have considered here the case of an incident field linearly
polarized in the x direction, but the expressions could be
generalized for any arbitrary polarization state (Mansuripur,
2002). Even if the incident field had a component only along
the x direction, the field at the focal plane will have components
along all the three directions x (unit vector �i ), y (unit vector �j )
and z (unit vector �k) (Fig. 2) and for a specific position can be
calculated as follows (Gu, 2000):

�E (r2, z2, ψ)

= π i
λ

{[i0 + i2 cos(2ψ)]�i + i2 sin(2ψ) �j + 2i i1 cos ψ �k},
(2)

Fig. 2. Vectorial model: focusing of a linearly polarized (x direction) beam
through a lens of focal length f , half-aperture a, maximum subtended half
angle α.

where (r2, z2) are the radial and axial coordinates of the
observation point at the focal plane relative to the focus point
and ψ is the azimuth angle defining the radial direction r 2.
When ψ = 0, the direction is along the vertical x axis, whereas
for ψ = π/2 the direction is along the horizontal y axis. The
definition of this angle is important in the vectorial theory
where the symmetry about the optical axis in the focal plane
is broken due to the depolarization effect, unlike in the scalar
model.

i 0, i 1, i 2 are three integrals expressed as follows:

i0 =
α∫

0

P (θ ) sin θ (1 + cos θ )J 0(kr2 sin θ )

× exp(−i kz2 cos θ ) dθ,

i1 =
α∫

0

P (θ )(sin θ )2 J 1(kr2 sin θ )

× exp(−i kz2 cos θ ) dθ,

i2 =
α∫

0

P (θ ) sin θ (1 − cos θ )J 2(kr2 sin θ )

× exp(−i kz2 cos θ ) dθ, (3)

where J 0, J 1, J 2 are the Bessel function of the first kind and of
the zero, first and, respectively, second order and the function
P (θ ) = √

cos θ exp [iϕ (θ )] represents the pupil aberration
function in which

√
cos θ is the apodization function for a

system obeying the Abbe sine condition (Innes & Bloom,
1966; Gu, 2000), like a MO. The Abbe sine condition that is
satisfied for all MOs, permits considering, within this vectorial
theory, large angles that are not compatible with a paraxial
approximation.

The presence of the three components in the image plane:

Ex = π i
λ

[i0 + i2 cos (2ψ)] ,

E y = π i
λ

i2 sin (2ψ) ,

Ez = π i
λ

2i i1 cos ψ,

(4)

leads consequently to three intensity components Ix, Iy, Iz and
three phases Px, Py, Pz that must be considered as independent.

To illustrate the result of vectorial theory, Fig. 3 presents the
intensity and the phase distributions for each component in
the focal plane of a ×63 MO with 0.85 NA. The wavelength
for the calculations was λ = 532 nm, and calculations were
performed on a 4 × 4 µm2 surface in the xy plane. The
structure of each component can be explained by simple
geometrical considerations. In our particular case the incident
electric vector oscillates along the x direction and, after the
refraction by the lens, it is bent in accordance to the refraction
law. Consequently, the field at the focus contains not only
components with the same polarization as the incident one
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Fig. 3. The x-, y- and z-components of the vectorial transverse APSF (xy) for a ×63/0.85 MO. lx: ly: lz, are in proportion of, respectively, 1: 0.0032:
0.1290. Calculations were performed on a 4 × 4 mm2 surface in the xy plane for all the component. The intensity distributions are normalized, the phase
distributions are coded between −π = black and +π = white.

(x direction), but also orthogonal (y direction) and longitudinal
(z direction) components. This effect is called depolarization,
as the electric vector looses its initial polarization state. In Fig.
2, one can observe that the rays in the yz plane will contribute
only to Ix component, the rays in the xz plane will contribute
to both the Ix and Iz components, whereas the intermediate
rays situated between these planes bring contributions to all
the three components Ix, Iy and Iz. The Ix distribution in the
xy plane is obtained by superposition of all the x components
from each ray and the same reasoning holds for the Iy and Iz

distribution. In Fig. 3, the absence of the Iy and Iz in the yz
plane is illustrated with the apparition of a zero intensity line
along the y direction in the Iy and Iz distributions. Similarly,
the absence of the Iy component in the xz plane explains the
dark line along the x direction in the Iy distribution.

The total intensity I in the focal plane (the transverse IPSF)
can be calculated as the sum of the intensity components

I = �E �E ∗

= (Ex �i + E y �j + Ez �k)(Ex �i + E y �j + Ez �k)∗

= |Ex|2 + ∣∣E y

∣∣2 + |Ez |2

= Ix + Iy + Iz, (5)

but it is undoubtedly improper to define a ‘total phase’,
as the phase of the resulting vectorial field �E , because its
orientation is continuously changing. Consequently, the phase
of each component Px, Py and Pz must be considered apart
and calculated as such. Because of the uneven contributions
coming from each component, the resulting total intensity in
the focal plane does not present a radial symmetry any more
but exhibits a radial elliptical distribution. The weights of each
component of the total intensity are not equally distributed and
for the case of the×63/0.85 MO considered as typical example,

the maximum intensity components ratio Ix: Iy: Iz, taken at the
focus, are in proportion of, respectively, 1: 0.0032: 0.1290.
These ratios depend on the NA, with increasing weights of Iy

and Iz increasing for increasing NA, and observing that the
radial elliptical deformation becomes more pronounced as NA
increases.

Note that for small NA, the depolarization effect is very
small and even disappears, resulting from the fact that for
small angles, J 1 (kr2 sin θ ) and J 2 (kr2 sin θ ) become negligible
compared to J 0 (kr2 sin θ ). Therefore, the field at the focus (see
Eq. 3) can be reasonably approximated by the scalar expression
E (r2, z2, ψ) ∼= π i

λ
I0.

In the case of high NA, Iy is negligible compared to Ix

and Iz, and one can observe that the main lobe of the total
intensity distribution is essentially broadened because of the
depolarization effect observable in the x direction, that is, the
direction of polarization, whereas the yz distribution is nearly
similar to the yz distribution obtained with the scalar model
(Marian, 2005). Therefore, an ellipse can be defined with two
orthogonal axes measured by the FWHM (full width at half
maximum) of the central lobe of the radial IPSF, along the
x direction profile (for y = 0) and, respectively, along the y
direction profile (for x = 0). Then an ellipticity factor can be
calculated as the difference in length between the two axes of
the ellipse, expressed in percent relatively to the axis length
not affected by the depolarization effect (y axis in the case
of a x-polarized light). A quantitative comparison shows that
for low numerical apertures, this factor is in order of 2.8%
for a 0.35 NA (≈20◦ subtended half angle) and, respectively,
6.2% for a 0.5 NA (≈30◦ subtended half angle). The deviation
increases significantly with the NA. For an immersion oil×100
with 1.3 NA MO (≈70◦ subtended half angle), it reaches 30%.
We can objectivize the physical limit to the scalar model if
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Fig. 4. APSF computed in the axial direction with the vectorial model for
a ×63/0.85 MO (a) and a ×100/1.3 MO (b). The intensity distributions
are enhanced by a nonlinear distribution of the grey levels, the phase
distributions are coded in 8 bits between −π = black and +π = white.

we consider as tolerable a maximal error corresponding to
an ellipticity factor of 10%. This deviation corresponds to
a 0.65 NA (≈40◦ subtended half angle), above which the
use of the vectorial model is imposed for an accurate APSF
description. However, the above considerations are valid for
a linear incident polarization only, whereas in the case of an
unpolarized beam, an average among all the polarization states
occurs and the scalar model can be still used.

Figure 4 presents the axial APSF (total intensity I and phase x
component Px) calculated for a an ×63/0.85 MO (Fig. 4a) and,
respectively, a ×100/1.3 MO used with a 1.518 immersion oil
(Fig. 4b). The simulations were performed using the vectorial
theory. We have named axial APSF an axial section along the
optical axis through the 3D APSF, whereas the transverse APSF
is the xy section at the focal point through the 3D APSF. We
present here both the xz and the yz sections. Concerning the
phase images, only the Px component is represented. In the
yz plane (ψ = π/2), because there is only an x-component
contribution as already discussed before, only Px is defined,
whereas in the xz plane (ψ = 0), both Px and Pz appear
due to the x and z contributions. No y component appears
in these plans and, therefore, Py is not defined. If we consider
an intermediate section between xz and yz, for example, for
ψ = π/4, all three phases Px, Py, Pz are defined separately. It is
in principle possible to measure individually each polarization
component in amplitude and phase, for instance by using a
dedicated holographic setup (see further) with the appropriate

polarization state in the reference beam interfering with the
field emerging from the lens.

3. The 3D APSF in the presence of aberrations

Aberrations are present in most optical imaging systems:
lenses, lenses assembly and MO. They are generally a
consequence of the fabrication process; spherical aberrations
in particular are due to grinding and polishing process of the
lens which naturally tends to produce spherical surfaces. These
aberrations are usually compensated by the recourse to the
assembly of several lenses having complementary geometrical
anddielectriccharacteristics.Othertypesofaberrationsappear
when the focused beam crosses one or several dielectric layers,
for which the MO has not been designed. To analyze the
aberrations appearing when a MO is used under inappropriate
conditions, Gibson (Gibson & Lanni, 1991) proposed a
simple approach, based on the scalar diffraction theory and
geometrical optics calculations. The aberration function is
obtained through a calculation involving the ideal design
parameters of the MO (cover slip refractive index, cover slip
thickness, immersion oil refractive index) and their effective
value. The simulations presented here were obtained by
implementing the approach suggested by Haeberlé (2003),
who combined the Gibson and the vectorial Török models.
Figure 5 summarizes the results of the simulations of the APSF
of a ×100 MO with 1.3 NA, with nonpolarized light, used
under different conditions. If nonpolarized light is diffracted
by the MO, the birefringence caused by the high NA MO would
mix the cross-polarized components of the beam, while keeping
a nonzero correlation among the cross-polarized components
of the beam. Therefore, the cross-polarized components of the
outgoing beam would cancel out for statistical reason, because
the cross-polarized component of the emitted field would be
uncorrelated. Therefore, the use of nonpolarized light ensures

Fig. 5. Axial APSF (xz) examples when the cover slip and the immersion
oil refractive index are varied according to Gibson model: ideal case ng =
1.525, ni = 1.518 (a), cover slip refractive index is varied ng = 1.530
(b), immersion oil refractive index is varied ni = 1.514 (c). The MO
considered here was×100/1.30. The intensity distributions are enhanced
by a nonlinear distribution of the grey levels, the phase distributions are
coded in eight bits between −π = black and +π = white.
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the phase map to be identical for all the possible polarization
orientations of the reference wave; hence, only one is presented
in Fig. 5. The design conditions of the MO are defined by
an immersion oil of refractive index equal to 1.518 and a
cover slip of 0.17-mm thickness and 1.525 refractive index
(standard value for some manufacturers). In this case, the
APSF is perfectly symmetric, both transversally and axially
(Fig. 5a), as predicted in the case of nonaberrated APSF. Any
small deviation from the ideal conditions leads to significant
aberrations (Fig. 5b and c). The main lobe of the APSF is
shifted from the central position (Fig. 5b and c), which indicates
the presence of spherical aberration. It was proved (Gibson,
1991) that high-order spherical aberrations are necessary
to describe properly this kind of aberrations. For example,
the aberrations induced by the immersion oil refractive index
variation can be properly described by using third- and fifth-
order spherical aberration, whereas the use of a nondesigned
cover slip requires third-, fifth-, seventh- and even more higher-
order spherical aberration. It was also observed that the cover
slip thickness variation has only a small influence, whereas
the cover slip refractive index variation affects drastically the
APSF, even for very small variation about 0.001. Figure 5
shows these aberration effects, when the refractive index of
the immersion oil was changed from the ideal 1.518 value to
1.514 (Fig. 5b) and when the refractive index of the cover slip
was changed from 1.525 to 1.530 (Fig. 5c). For Fig. 5b and
c, the corresponding aberration function expressed in term of
Zernike coefficients contains mainly the so-called power [Z3 =
31/2(2x2 +2y2 −1)] and primary spherical [Z10 =51/2(6(x4 +
2x2y2 + y4 − x2 − y2) +1)] aberrations, the other coefficients
being in those cases negligible. The coefficients values are
Z3 = 2.36 and Z10 = −0.56 for Fig. 5b, respectively, and
Z3 = −1.96 and Z10 = −0.48 for Fig. 5c. The high sensitivity
related to the immersion oil refractive index suggests that high
attention must be paid at the rapid change of the immersion oil
refractive index with the wavelength (about 0.01 throughout
the visible spectrum) or due to the temperature variations
(about −0.0004 per additional degree). Concerning the cover
slip, we must mention also that MOs can be found which
include a correction collar to compensate for the cover slip
thickness variation. This is done by a slight displacement of
some lenses that compose the objective. However, because of
the large number of orders of spherical aberration appearing
(Gibson, 1991), it is unlikely that the movement of a small
number of lenses would be sufficient to compensate for all of
the significant orders of the spherical aberration introduced.

As an example of the interest and use of the phase (PPSF)
modifications induced by optical aberrations, the following
situation has been treated: theoretical calculations of the
phase variations along the optical axis have been performed
in the presence of aberrations and compared to the absence
of aberrations, for the same 100× 1.3 NA MO as above.
The results are presented in Fig. 6. Indeed, it is usually
expected that the phase increases linearly along the optical

Fig. 6. Axial profiles through the xz section of the IPSF and PPSF for the
×100/1.30 MO, without (a) and with (b) spherical aberrations induced
by the use of nondesigned parameters (cover slip, immersion oil). A linear
phase corresponding to the displacement along the optical axis has been
subtracted in both (a) and (b) to enhance the anomalous phase behaviour
in presence of aberration.

axis, proportionally to the displacement, but modulated by the
so-called phase anomaly at each passage through an intensity
minimum on the optical axis (see, e.g. Farnell, 1958; Born &
Wolf, 1980). In the designed conditions, the subtraction of a
linear phase from the axial phase leads as expected (Fig. 6a)
to the observation of a 2π rapid phase shift for the main axial
intensity lobe, and phase jumps smaller thanπ for all the others
secondary lobes. But the phase, except for the modulations
described above, remains proportional to the displacement
along the optical axis. This is no more the case in the presence
of aberrations, where the proportionality is not preserved, as
can be seen from Fig. 6b, where is presented a simulation of
the axial APSF in the presence of the high-order spherical
aberrations induced by the absence of appropriate cover slip
and immersion oil. The axial phase, from which the same
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linear phase has been subtracted, diverges rapidly from the
linear phase when going away from the main intensity lobe.
Furthermore, the phase anomalies associated with the passage
through the axial intensity minima are weakened and the
intensity minima being less deep compared to the designed
case, and cannot be distinguished anymore. An experimental
verification for this case will be presented further in the paper.
These first results suggest that these anomalies in the phase
axial phase profile could be exploited to identify the aberrations
and possibly to quantify their presence. A more complete and
systematic study of the phase nonlinearity, comparable to the
ones conducted by Farnell (1958) in the case of microwaves
lenses, could be developed and lead to the identification of the
aberrations, possibly to quantify their presence from their axial
phase profile.

4. APSF measurement

4.1. Experimental setup

Our setup is based on a Mach-Zehnder interferometer
configuration. In the object arm, a point-source object is
imaged through the MO or through the lens to characterize.
(Fig. 7). As a point source we use a near field scanning optical
microscopy (NSOM) fibre, with a 60-nm-diameter emitting tip.
The light source is a λ = 532 nm laser (frequency-doubled
Nd: YAG) with adjustable power up to 100 mW and the laser
is coupled in the optical fibre by a lens. The MO is mounted
on micrometric xyz platforms combined with tilt facilities,
allowing for proper alignment of the MO to avoid aberrations
coming from the setup misalignment. Fine fibre movements,
are achieved by a piezoelectric xyz stage, which permits
nanometric displacements (1 step=1.22 nm, within a range of
80 µm). A CCD camera (CCD1) is positioned at a large distance
of about 1500 mm to create a sufficiently high magnification
(about 1000× for a 100× MO) image of the point object,

Fig. 7. Experimental setup for the APSF measurement: BS beam-splitter,
BE beam expander, NF neutral density filter, λ/2 half-wave plate, M
mirror, FC fibre coupling lens, PS piezo system, MS micrometric stage,
MO microscope objective, O object wave, R reference wave. Inset: a detail
showing the off-axis geometry at the incidence on the CCD.

in order to obtain an optimal sampling by the CCD sensitive
area (512 × 512 pixels, pixel size 6.7 µm) of the diffraction
pattern spatial distribution. As the MOs are now commonly
infinity corrected, this large distance also ensures a correct
use of the MO, that is, a correct working distance. The setup
includes also a second CCD camera (CCD2), which is used for
alignments purposes: the MO needs to be carefully aligned on
the optical axis defined by the z-scanning direction of the fibre
and the position the CCD1 to assure a correct characterization
of the MO without external influences coming from the setup
misalignments imperfections (tilt, coma, astigmatism). This
alignment procedure is revealed to be significantly facilitated
when the pupil of the MO is monitored on CCD2. Indeed, due
to the large image distance of 1500 mm, a small tilt change of
the MO moves the image out of the CCD1. CCD2 is also used
to estimate the setup stability during the z-scan, as it will be
pointed out further.

The reference wave R is first enlarged by using a beam-
expander, and then combined, by means of a beam-splitter,
with the object wave O emerging directly from the MO. An
off-axis geometry was considered on both CCDs, which means
that O and R impinge the hologram plane with different angles
(see inset Fig. 7). The angle between O and R must be chosen in
order to obtain fringes correctly sampled by the CCD camera.
Neutral density filters were used to adjust the light intensity
in the reference arm. The adjustment of the intensity ratio
between R and O is essential in order to obtain high contrasts
images (Charrière et al., 2006). A half-wave plate was also
inserted in the setup to control the polarization state in the
reference arm, aiming at maximizing the fringes contrast
on the hologram. Experimentally, no important change on
the hologram fringes contrast is observed when rotating the
half-wave plate, attesting for nearly circularly polarized light
outgoing of the NSOM tip in the object arm. A remark on the
exactness of the method needs to be done: to measure what
corresponds to the exact definition of the APSF of the MO,
one should in principle scan the image field, that is, moving
CCD2, with the NSOM tip remaining fixed in the focus of the
MO. Measuring the APSF for a fix image plan and a moving
NSOM tip adds little aberration, as the MO is aberration free
for only the focus position, but the added aberration remains
somehow negligible with regard to the short excursion of the z-
scan. Furthermore, moving with an interferometric precision
the NSOM tip is easily achieved with the piezoelectric xyz stage;
by scanning the image field, the scanning range would be
increased by the square of the optical system magnification,
reaching centimetres or even metres with a magnification
of 1000, making the interferometric measurement extremely
difficult if not impossible.

4.2. Holograms reconstruction

In digital holography a CCD camera is used to record the
hologram, instead of a photographic plate or photorefractive
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Fig. 8. (a) Example of an experimental 512 × 512 8-bits hologram; (b) a
zoom, corresponding to the dashed square of (a), where the interference
fringes appear more visible; (c) the Fourier spectrum of (a) containing the
zero order (zo), the real image (ri), the virtual image (vi) and also parasitic
interferences spatial frequencies (p); (d) Fourier spectrum after application
of the bandpass filter.

crystal traditionally used in classical optical holography. The
hologram (Fig. 8a and b) is formed by the interference between
the wave field diffracted from the object to be analyzed, that is,
the object wave O and a reference wave R provided from the
same source, in order to keep the coherence properties. The
hologram intensity is given by:

IH (x, y) = |R|2 + |O|2 + R∗O + RO∗, (6)

where R∗ and O∗ denote the complex conjugates of the
reference wave and, respectively, the object wave. The digital
hologram, resulting from the 2D sampling of IH(x,y) by the
CCD camera, is transmitted to a computer where the hologram
reconstruction is numerically performed.

Our reconstruction process consists in evaluating the
interferogram using a Fourier-transform method (Malacara
& De Vore, 1992) with the following steps. In a first step, we
compute the Fourier transform (Fig. 8c) of the hologram. In a
second step, only the R∗O or the RO∗ spatial frequencies are
selected in the amplitude spectrum, by applying a simple filter
(Fig. 8d). Due to the off-axis geometry, these spatial frequencies
are separated in the Fourier plane, symmetrically located with
respect to the zero-order spatial frequencies. The larger the
angle θ between R and O is, the better the separation between
these spatial frequencies terms will be. In this filter process,
we use a filter with a bandwidth as close as possible to the

R∗O or RO∗ bandwidth, in order to keep a maximum of high
frequencies and consequently a maximum of details in the
reconstructed image. Moreover this filter allows eliminating
the influence of parasitic reflections (Fig. 8c) that are not
detectable in the hologram due to their low intensity but
are clearly visible in the spectrum. The third step simulates
the re-illumination of the hologram with the reference wave,
considering that in the Fourier space this multiplication by R
corresponds to a translation of the selected frequencies to the
centre of the Fourier plane. This procedure must be carefully
achieved in order to avoid the introduction of any phase error
during the reconstruction. It is performed by an automatic
algorithm described in (Colomb et al., 2006). Briefly, this
algorithm is based on a calibration on a constant phase surface,
which is, in our case, obtained by an important defocus of the
NSOM point source: the NSOM point is moved away from the
focal point till the object wave recorded on CCD1 corresponds to
a cut-off portion of a slowly converging or diverging spherical
wave (Wang et al., 1995), where the phase can be assumed
to be constant on a transversal plane. Once this calibration of
the system is done, the entire stack of holograms is processed
in the same way. In a last step, the complex amplitude (i.e.
the APSF) is obtained by an inverse Fourier transform and
the IPSF and PPSF are afterwards extracted as the modulus
squared and the argument of the APSF. The intensity and phase
information can be separated in two different images (see,
e.g.Fig. 11b), even though only a single hologram is required to
restore them. The accuracy in a phase transverse distribution
was assessed at about λ/60 for transmission measurement
conducted in air or λ/40 for oil immersion with a refractive
index of 1.518 consistently with the results presented further.
We also mention that the values extracted for the PPSF are
quantitative values modulus 2π , whereas the IPSF values are
extracted up to a multiplicative constant that depends on the
intensity of the reference wave.

4.3. Setup stability

The measurement of the axial APSF may require a z-scan of the
point object. During this scan, a stack of holograms is obtained
by scanning the NSOM tip along the optical axis within a
range of tenths of micrometres and with a well-controlled step
accuracy of a few nanometres. Each hologram is afterwards
reconstructed, following the aforementioned reconstruction
process. Consequently, the axial intensity and phase can be
estimated. The acquisition of a hologram stack, performed at
25 Hz, takes from seconds to a few minutes, depending on the
considered step and range. Therefore, stability must be ensured
during the hologram stack acquisition, to provide accurate
estimation of the axial PPSF.

As in all interferometric techniques, many factors can affect
the phase measurement, principally mechanical vibrations
and air turbulences. To overcome these drawbacks, the system
was isolated on an antivibratory bench, and the whole stage
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Fig. 9. Temporal phase fluctuations at CCD1, CCD2, and the phase
difference between the to phases (1000 holograms recorded in 40 s).

was also protected from air turbulences by curtains. Moreover,
the object and the reference arms were also surrounded by
plexiglas tubes to minimize the perturbations coming from air
turbulences. The particular choice of positioning CCD2 very
close to the MO output pupil and the fact of synchronizing
it with CCD1 by an external trigger, permit the precise
determination and monitoring of the phase fluctuations,
which appear along the O and R paths, and along the fibre
of the NSOM tip in particular.

A static measure was performed, that is, the NSOM fibre was
kept at the same position and a holograms stack was acquired
during a time laps equal with the one estimated for an axial
z-scan (40 s for 1000 holograms). The holograms recorded
by both CCD1 and CCD2 were reconstructed, according to
the previously described reconstruction process, and the time
fluctuations of the phase were measured and averaged over a
small region of about 30 × 30 pixels. The results are presented
in Fig. 9 where it can be noticed that the CCD1 and CCD2 signals
are well correlated, with a temporal standard deviation of
0.071 radians (4.11◦) calculated onto the difference between
the two phase signals. This means that the temporal phase
fluctuations observed on the two CCDs are similar, and that no
additional noise disturbs the waves along the lengthy path to
CCD1.

CCD2, positioned very close to the MO, intercepts the object
wave sufficiently far from the focal point (around 1500 mm), so
that the wave can be considered as behaving as a cut-off portion
of a uniform spherical wave (Wang et al., 1995). Therefore,
any displacement of the NSOM fibre along the optical axis
is followed by a global and uniform phase change on the
wavefront recorded on CCD2, proportional to the displacement
of the fibre. When a z-scan is performed, this a priori knowledge
of the global phase signal to be recorded on CCD2, allows us to
evaluate the stability of the setup during the scan.

5. Results and discussions

In order to illustrate the performance of the disclosed method
and apparatus, 3D APSF measurements are presented. The
example of a special MO will be taken. Some MO types
permit the correction of aberration introduced by cover
slips of different thickness, by means of an adjustable collar
placed on the objective body. By turning the collar to a
specific position, corresponding to some particular cover slip
thickness, a slight displacement of some built-in lenses inside
the MO, introduces variety of aberrations ranging from positive
to negative sphericity aberrations, covering therefore, the
differentpossibilitiesencounteredinusingcoverslipsofvarious
thickness. We have used such an objective in order to observe
the spherical aberration, which appears when the correction
collar is turned from one extremity to the other. The measured
MO was a long-distance Achroplan ×20 with a numerical
aperture 0.4 and a correction corresponding to a cover slip
thickness varying from 0 to 1.5 mm. The MO was mounted in
the optical setup without cover slip and the axial APSF has been
measured for three particular positions of the correction collar:
0, 0.5 and 1. For each of the three correction collar positions,
a stack of 740 holograms was recorded, corresponding to a
total axial scan of 44.4 µm with 60-nm steps. The holograms
were reconstructed and new stacks containing the intensity
and respectively the phase images were created, providing
the 3D IPSF and respectively the 3D PPSF. The axial APSF is
obtained by sectioning the new stacks longitudinally, whereas
the transverse APSF is obtained by performing a transversal
section at a specific axial position. The results are summarized
in Fig. 10.

We can observe that in the 0.5 collar position (Fig. 10b) the
APSF is almost aberration free, except maybe a small amount
of spherical aberration which can be identified from the slight
asymmetry. When the collar is turned symmetrically with
respect to the central 0.5 position (Fig. 10a and c), we can
observe a symmetrical shift and conjointly, the intensity of
the central spot of the IPSF is distributed in the secondary
lateral lobes, what is typical for the spherical aberration. Note
that for the position 1 of the correction collar (Fig. 10c)
the fringes on the holograms were slightly saturated at the
maximal intensity position, due to a nonperfect adjustment
of the CCD1 dynamic range, what explains the dark spot
appearing in the centre of the reconstructed intensity image.
The axial shift during the collar turns is clearly observed
and the shift distance may be used to quantify the amount
of spherical aberration. This example also shows how the
proposed method can be used to determine the best correction
for given experimental conditions. The insets of Fig. 10b
enhance the phase singularities, also called phase vortices
or phase dislocations, appearing at the zero intensity points.
These singularities are characterized, in a 2D representation,
by a phase change of ±π on a closed path around the
singularity:

∮
dϕ=±2π .Greatattentionhasrecentlybeenpaid
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Fig. 10. Axial APSF (amplitude and phase) for different cover slip thickness compensation in an adjustable collar ×20 0.4 NA microscope objective:
collar at position 0 (a), 0.5 (b) and 1 (c). The insets enhance the phase singularities appearing at the zero intensity points. The intensity distributions are
enhanced by a nonlinear distribution of the grey levels, the phase distributions are coded in eight bits between −π = black and π = white.

to the structure of these zero intensity points both theoretically
and experimentally. Totzeck and Tiziani extensively and clearly
described this phenomena and its possible use in super-
resolution imaging in their study of the 2D complex field
diffracted by subwavelength structures (Totzeck & Tiziani,
1997). Walford et al. (2002) and Dändliker et al. (2004) also
discussed these singularities in their measurement of a lens
APSF and showed that the study of their 3D conformation
can play a role in aberrations identification. Thanks to the
shorter acquisition time required for a complete 3D APSF
measurement with our system (1D scan vs. 3D scan), the
external noise sources including vibrations, air fluctuation or
relative movements of the setup components, are minimized,
the phase singularities more clearly identifiable in the 2D
phase distributions. Furthermore the presented measuring
technique is applicable without restriction to high NA MO,
as pointed out in the next paragraph.

A more specific study has been conducted on a ×100 MO
with 1.3 numerical aperture. The ideal conditions of use for
this MO, predicted by the manufacturer, are an immersion
oil of 1.518 refractive index and a cover slip of 0.17-mm
thickness with 1.525 refractive index. Ideally, the specimen
is supposed to be placed immediately behind the cover slip.
If the ideal conditions are satisfied, the measured APSF is
perfectly axially symmetric, assuming no misalignment in
the setup. As it was shown before in the present paper, any
small deviation from the ideal parameters induces spherical
aberrations and causes significant modifications in the APSF
shape. In our measurements, we have chosen to perform the
axial scan by moving the object (the NSOM point) instead of
the MO. The measurements presented in Fig. 11 (top) were
achieved without cover slip but using the ideal immersion oil.
The hologram stack was acquired with an axial step of 30.5 nm

Fig. 11. Axial (a) and radial (b) comparisons in amplitude and phase
between experimental APSF measurement (up) and calculated APSF with
the Gibson and Lanni model [10] for a ×100 1.3 NA microscope objective.
Measurements performed in oil (n = 1.518) without cover slip. The
intensity distributions are enhanced by a nonlinear distribution of the
grey levels, the phase distributions are coded in 8 bits between −π = black
and π = white.

and reconstructed by using the process described in
subsection 4.2 (4.2 Holograms reconstruction).

Figure 11a compares the measured axial APSF (top) with the
theoretically computed axial APSF (bottom). The theoretical
simulation was obtained by using the scalar Gibson model
(Gibson & Lanni, 1991), adapted for the case when the axial
scan is performed by moving the object instead of the MO.
Normally the use of a vectorial model, taking into account
the polarization of light, is more suitable to calculate the
APSF of such a high numerical aperture MO, notably to
reproduce the circular asymmetry of the radial APSF. But,
in the present work, the scalar model reveals itself sufficient
as the light outgoing the NSOM fibre tip is nearly circularly
polarized and the measurement is performed on the image
side with a small NA. Therefore, the scalar model can be used
in first approximation (the xy-distribution prediction will be
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Fig. 12. (a) Measured xz sections of the IPSF and PPSF for the ×100/1.30 MO used under nondesigned conditions (no cover slip, no immersion oil);
(b) simulated and measured phase profile behaviour — from which a linear phase corresponding to the displacement along the optical axis has been
subtracted — along the optical axis.

somehow too narrow), and one can benefit from its speed
advantages for calculations. The z-step in the simulation was
10 nm, which allows explaining the theoretical smoother
phase image. The intensity was normalized and the grey levels
were distributed nonlinearly to enhance low-intensity details.
The phase was wrapped, taking values between 0 and 2π

radians. As expected, the axial APSF is asymmetric, due to
spherical aberrations caused by the absence of cover slip.

The transverse APSF, obtained by transverse sectioning of
the 3D APSF in the plane corresponding to the axial IPSF
maximum value, is shown in Fig. 11b: measurement (top)
and theoretical simulation (bottom). The airy pattern is clearly
visible both in the amplitude and phase images, with its central
disk and the surrounding rings. As expected, phase π -jumps
are observed at each passage through the amplitude minima.
Due to the presence of spherical aberration, the phase is not
constant but decreases smoothly toward the centre inside the
regions delimited by the airy rings. As one can see from Fig. 11,
the analytical model and the measured data are in excellent
agreement, assessing the prediction of the Gibson and Lanni
approach for calculating the aberrations due to a nondesigned
use of the MO.

The last result presented concerns the experimental
verification of the novel phase behaviour in the presence of
optical aberrations induced by nondesigned conditions of use
presented in subsection 3 (3. The 3D APSF in the presence
of aberrations). Theoretical calculations and experimental
results are presented in Fig. 12, for the same 100× 1.3 NA
MO as above, used without immersion oil and without cover
slip. The broadening of the APSF along the optical axis may be
observed in Fig. 12a. As expected, the axial phase, from which a
linear phase has been subtracted, diverges rapidly when going
away from the main intensity lobe. In can be seen in Fig. 12b
that simulation and experiment are in good agreement.

6. Conclusion

We have reviewed in the present paper different models,
corresponding to various simplifying assumptions: scalar,
paraxial and vectorial. Depending on the NA of MO and
polarization of the beam, they can be applied to compute
the 3D APSF of a lens or MO. It is obvious that the more
adequate model is the vectorial one, including considerations
about the polarization state and separate calculus of each field
component. The differences between the vectorial and the
scalar model are not very significant when low and moderate
NAsystemsareconsidered,butmaybecomeimportant forhigh
NA systems typically above 0.65 NA. The advantage brought
by the scalar model is its simple implementation and reduced
computation time, which, for low and moderate NA system can
be further reduced by considering the paraxial approximation.
For the first time, the complex APSFs are calculated in
amplitude and phase according to the vectorial formulation
applied to the Gibson model. First calculations reveal the 3D
phase distribution within the PSF as a function of polarization,
whereas the second ones illustrate the changes accompanying
high NA MO under nondesigned conditions. The simulations,
performed with the Gibson model, enlighten the phase
variation on the optical axis, in the presence of aberrations
caused by nondesigned conditions (refractive index, cover slip
type): the axial phase is no more simply proportional to the
displacement along the axis. This observation, experimentally
verified, suggests that the study of the phase variations on the
axis could provide a very sensitive indicator of the presence
of aberrations, and also as a quantitative measure of the
aberrations weight.

Theoretical analyses of imaging systems PSF have
been widely and systematically conducted. Nowadays each
microscope user can benefit from a better skill in the design of
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MOs. Most recent deconvolution algorithms have contributed
to the enhancement of the image quality. In this context, the
PPSF role, obvious in all phase-sensitive imaging techniques,
can also play an essential role in aberrations identifications and
quantifications in microscopy as it already has been discussed.
The results presented in this paper provide a new contribution
to the problem of aberrations identification and removal by
introducing the concept of PPSF as a sensitive index to lenses
or MO imperfections.

To fulfil experimental requirements we have developed a
fast, reliable and quantitative method for measuring the APSF
of an optical system, and MOs in particular. A 1D scan,
performed by moving a NSOM fibre tip along the optical
axis in the focal region of the MO, leads to the full complex
3D description of the APSF after numerically processing the
holographic digitally recorded data. The accuracy of the phase
determination reaches up to λ/60 when performed in air. The
setup can easily be adapted to the working parameters of a
given MO (immersion oil thickness and refractive index, cover
slip thickness and refractive index, specimen position, etc.)
allowing a precise and reliable characterization of the MO in
its using conditions. This effective measurement can be used
as a simple and efficient technique to assess the predictions
of an analytical model, like the Gibson & Lanni approach
used in this paper (Gibson & Lanni, 1991). Furthermore, the
knowledge of the exact APSF, giving a direct access to the
optical aberrations present in the system, allows, within the
frame work of phase-sensitive imaging techniques, including
DHM, a precise interpretation of the measured phase on a
given specimen by numerically compensating for all these
aberrations.
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