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We report the experimental observation of systematically occurring phase singularities in coherent imaging of sub-
Rayleigh distanced objects. A theory that relates the observation to the sub-Rayleigh distance is presented and com-
pared with experimental measurements. As a consequence, the limit of resolution with coherent illumination is
extended by a factor of 1:64×. © 2010 Optical Society of America
OCIS codes: 030.1670, 090.1995, 100.6640, 100.5070, 110.0180.

The limit of resolution is generally expressed by
Rayleigh’s criterion of resolution [1], given in Eq. (1) for
coherent light:

dmin;coh ¼ 0:82
λ
NA

: ð1Þ

Originally, Rayleigh formulated that two incoherently im-
aged points are resolved if the maximum of one PSF lies
in the first minimum of the other PSF. Because of inter-
ference, that criterion does not apply for coherent ima-
ging and was reformulated by Sparrow as a contrast
criterion of 27% of the minimum between two maxima.
Consequently, the prefactor in the case of coherent ima-
ging is 1:34× superior to the one in the case of incoherent
imaging (0.61). Thus, the imaging system illuminated by
incoherent light is supposed to have inferior resolving
power compared to the coherently illuminated one. Re-
cently, the demonstrated interference of spherical waves
has been theoretically deduced to generate vortex arrays
[2], as anticipated by intensity measurements and compu-
tation of near fields [3]. We report a new (to our knowl-
edge) method that states how singularities can be used
for improving the coherent image resolution power. Fol-
lowing the idea of phase singularities created in Young’s
interference pattern [4], our test target consists of a thin
opaque aluminum film (thickness ¼ 100 nm) on a con-
ventional coverslip. Instead of pinholes, nanometric
apertures are drilled by focused ion beam (FIB) in the
coating and are placed at very close distances d, smaller
than the limit of resolution in Eq. (1). The distance is con-
trolled and measured by scanning electron microscopy
(SEM), as shown in Figs. 1(a), 1(d), and 1(g). The SEM
measurements reveal slightly conical holes of Øreal ≈

90 nm diameter. The measured center-to-center (ctc) dis-
tances d match within a precision of �5 nm.
We demonstrated that a single nanometric aperture

can be used as a complex point source [5]. In this ap-
proach, the complex field can be accessed by using digi-
tal holographic microscopy (DHM) [6] in a transmission
configuration. Thus, the amplitude, as well as the phase
of the complex field emitted by two closely spaced nano-
holes, can be extracted by following the methods of [6,7].
The results are shown in Fig. 1 where NAeff is determined
from the phase image of a single nanometric aperture
placed on the same test target.
The images show the amplitudes [cf. Figs. 1(b), 1(e),

and 1(h)] of two PSFs beneath the coherent limit of

resolution (dmin;exp ¼ 526 nm). It can be seen that the
two PSFs converge and can no longer be distinguished
by the contrast criterion. Accordingly, the phase images
[cf. Figs. 1(c), 1(f), and 1(i)] show the superposition of
the known concentric interference pattern of the PSF
[7]. The concentric phase pattern is the result of a sphe-
rical wave varying from −π to π. This superposition re-
sults in the generation of lines of phase singularities.
Their direct observation in lateral phase images is pre-
sented for the first time, to our knowledge, as well as

Fig. 1. Experimental SEM images of test targets (a), (d), and
(g) and their experimental DHM images [(b) and (c), (e) and (f),
(h) and (i)] in the focal plane for λ ¼ 532 nm and NAeff ¼ 0:83.
The test targets are couples of nanoholes drilled by FIB in an
aluminum film and are pictured at 100; 000× magnification with
corresponding scale bars. Respectively displayed in (b) and
(c) are the imaged amplitudes and their corresponding phases
of test target (a), with nanohole ctc distance d ¼ 500 nm.
(d)–(f) are the corresponding results for d ¼ 400 nm, and
(g)–(i) are for d ¼ 300 nm.
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a method for direct exploitation. It turns out that the di-
rection of those lines of singularities varies systemati-
cally with the ctc distance of the two holes, as can be
seen by comparing Figs. 1(c), 1(f), and 1(i).
The lines of phase singularities can be explained as the

result of an interference phenomenon. The spherical
waves emitted from each nanohole intercept mutually
and create destructive interferences at the positions
where ΔΦ ¼ π. Especially in Fig. 1(c), the convergence
of out-of-phase wavefronts results in singularities that
can be very well observed. The phase arrangement in
the focal image plane is schematically illustrated in
Fig. 2, which shows the circles of equal phases with π
spacings.
Considering the scale of the holes’ diameter Øreal of

about λ=6 and their circular shape [cf. Figs. 1(a), 1(d),
and 1(g)], a simple geometrical model of ideal point
sources is presumed in the far field [8]. Because the con-
sidered ctc distances are above the near-field scale, high-
er-order scattering effects are neglected.
A total of four destructive interferences are possible

for the two commutable pairs of rings, which explains
the observations of Fig. 1. The characteristic spacing s
between two out-of-phase circles with radii r1 ¼ r and
r2 ¼ r þ s can be calculated by

s ¼ ΔΦ
kmax

¼ π
ð2π=λÞNA ¼ λ

2NA
; ð2Þ

with themaximal spatial frequency kmax allowed byNA. In
the event of an offset phase difference Δϕ, for instance,
through a longitudinal displacement Δz, a cor-
rection Δs ¼ λΔϕ=ð2πÞ is introduced in r2 ¼ r �Δsþ s.
Hence, the effective spacing,

s0 ¼ s�Δs ¼ sð1� NAΔϕ=πÞ; ð3Þ

can be contracted or dilated. Applying Pythagorus to the
interception point’s triangle results in

x2 þ ða=2Þ2 ¼ r22; ðd − xÞ2 þ ða=2Þ2 ¼ r21; ð4Þ

according toFig. 2. Furthermore, the angle θ relative to the
symmetry axis is given by the following trigonometric
relation:

tan θ ¼ x − d=2
a=2

: ð5Þ

Combining the geometrical relations in Eqs. (4) and (5)
and solving for d results in

dðθ; r; s0Þ ¼ f2r2 þ 2rs0 þ s20

− ½4r2ðr þ s0Þ2 − s20ð2r þ s0Þ2 cot2 θ�1=2g1=2:
ð6Þ

This equation yields to symmetric singularities (cf. left and
right sides in Fig. 2) if s0 ¼ s. However, a phase difference
Δϕ breaks this symmetry, in which a Δz displacement is
coded. Given the examined experimental situation
Δϕ ¼ 0, though, we restrict the considerations to s0 ¼ s.
The parameter r in Eq. (6) describes the dependence of θ
of the order of the equal phase circle: for higher-order
rings, θ will be smaller than for lower orders of the same
distance d. Therefore, strictly speaking, the line of singu-
larities is bent. To quantify this effect, Eq. (6) is plotted in
Fig. 3 for different r and d values. The plot shows that the
curvature is strongest for large distances d. However, the
curvature (represented in light gray in Fig. 3) decreases
asymptotically for smaller distances and becomes negligi-
ble. Furthermore, the scheme in Fig. 2 suggests that θ can
maximally reach π=2. The minimal deducible distance,
therefore, given for the maximal angle of θ, is

θmax ¼ π=2 ⇒ dmin ¼ s: ð7Þ

This equation states a new limit of resolution based on an
adapted coherent resolution criterion. It results in resol-
vable distance of minimal spacing 1:64× smaller than
suggested by Eq. (1), and even 1:24× superior to the cor-
responding equation for the incoherently illuminated
case. To test this hypothesis and to verify Eq. (6), we
have measured θ directly from the experimental results
shown in Fig. 1 (600 nm distanced nanohole couple not

Fig. 2. Schematic illustration of image plane in phase with
Δϕ ¼ 0. Circles show contours of equal phase emitted from
two point sources located the circles’ center.

Fig. 3. Deduction of nanohole distances from angle θ of phase
singularities for λ ¼ 532 nm and NAeff ¼ 0:83. The line plot in-
dicates the theoretical relation for different reference radii r.
The points and gray bars indicate the experimental results from
Table 1 and their corresponding ranges of trust.
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illustrated). The results are summarized Table 1. θi ismea-
sured as a function of ri for several phase contours
(N ¼ 12) with a reading precision ofΔθi for each ctc dis-
tance. The associated hole distances di are calculated by
Eq. (6), and their uncertainties σd;i are determined accord-
ing to the error propagation of Δθi. Table 1 indicates the
mean values with a precision of the error in the mean.
Therefore, Δθ indicates the visibility of the phase singu-
larities, whereas σd shows how much the deduced dis-
tance is sensitive to variations of θ.
According to the uncertainties of �d, the lateral preci-

sion reaches ≈24 nm. The 300 nm measurement, though,
is just beneath the limit of resolution in phase given by
Eqs. (2) and (7). As seen in Fig. 1(i), the four singularity
lines are merged to two and result in θ ¼ π=2. The smear-
ing out (Δθ ¼ �10°) of the phase singularity in Fig. 1(i)
can be interpreted as the visual limit of resolution in
phase where the unique orientation of the singularity
is lost. Consequently, the distance can be estimated to
be 320 nm or smaller.
In Fig. 3, all experimental results of Table 1 are com-

pared to the theoretical d–θ relationship according to Eq.
(6). The deduced distances �d are found to match the real
ones. Vice versa, the measured angles �θ overlap with the
associated θ of the real distances. The asymptotic beha-
vior of the theoretical curve explains the trend of σd to
become more accurate for bigger angles. However, this
advantageous sensitivity is partially compensated by an
opposed trend of Δθ, i.e., the singularities become less
prominent for decreasing distances d. Moreover, a curva-
ture of the lines of singularities is not visible in Figs. 1(c)
and 1(f), sinceΔθ is bigger than the variation due to the r
dependence (cf. Fig. 3, light gray). Finally, the assump-
tion of constant s may augment σd if NAeff is affected
by asymmetric aberrations, e.g., coma or astigmatism,
which can be seen in Figs. 1(c), 1(f), and 1(i) as small
variations of s in different directions.
Our results endorse the simple theoretical considera-

tion based on the assumption that each sub-Rayleigh ob-
ject acts as a spherical wave emitter according to the
Huygens principle [8]. In the classical imaging formalism
for incoherent light, those emitters do not interact and
are simply imaged as an ensemble of PSF. Nonetheless,
the coherent imaging bears the capability of recovering

such intrinsic crosstalk. In this aspect, the observation of
singularities can be seen as a variant of structured illumi-
nation microscopy where the structured illumination
results from the sample properties themselves. The en-
hanced limit of resolution given by linear structured illu-
mination [9] is consequently comparable to Eq. (2).

In conclusion, the observation of intrinsic interference
phenomena in coherent imaging of sub-Rayleigh dis-
tances has been presented. The destructive interference
appears as lines of singularities in phase, and their orien-
tations have been shown to be related to the distances
between the pointlike objects. The correctness of de-
duced Eq. (6) is endorsed by matching the angles of sin-
gularity lines with experimental distances d. This proof of
principle suggests a new resolution criterion in phase, as
opposed to the contrast-based Rayleigh criterion. The
limit of resolution with coherent illumination is extended
by a factor of 1:64× and can be reformulated as Eq. (2).
We suspect that a possible offset phase difference could
further improve the resolution.
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Table 1. Results of Angle Measurements of Experimental Data for λ¼532 nm and NAeff¼0:83

FIBnominal Distance Error Source Unit 600 nm 500 nm 400 nm 300 nm

SEM d�Δ reading (nm) 600� 5 498� 5 403� 5 304� 5
DHM �θ �Δθ mean reading (degree) 31:6� 2:1 42:1� 2:9 50:9� 4:6 90� 10
With Eq. (6) �d� σd mean propagated (nm) 614� 30 485� 25 414� 16 ≤ 320
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