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Abstract: Based on truncated inverse filtering, a theory for deconvolution
of complex fields is studied. The validity of the theory is verified by com-
paring with experimental data from digital holographic microscopy (DHM)
using a high-NA system (NA=0.95). Comparison with standard intensity
deconvolution reveals that only complex deconvolution deals correctly with
coherent cross-talk. With improved image resolution, complex deconvo-
lution is demonstrated to exceed the Rayleigh limit. Gain in resolution
arises by accessing the objects complex field - containing the information
encoded in the phase - and deconvolving it with the reconstructed complex
transfer function (CTF). Synthetic (based on Debye theory modeled with
experimental parameters of MO) and experimental amplitude point spread
functions (APSF) are used for the CTF reconstruction and compared. Thus,
the optical system used for microscopy is characterized quantitatively by
its APSF. The role of noise is discussed in the context of complex field de-
convolution. As further results, we demonstrate that complex deconvolution
does not require any additional optics in the DHM setup while extending
the limit of resolution with coherent illumination by a factor of at least 1.64.
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1. Introduction

Coherently illuminated imaging systems suffer from an inferior lateral resolution compared to
their incoherent counterpart [1]. This aspect is further intensified by a variety of post-processing
methods to improve the image quality of incoherent light microscopy [2,3]. Many 2D deconvo-
lution methods, like deblurring, can be applied to improve image quality of incoherent imaging
systems [4] and 3D deconvolution techniques give rise to enhanced optical sectioning capability
[2]. Based on iterative expectation-maximization algorithms for maximum-likelihood deconvo-
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lution of incoherent images, even enhanced resolution has been demonstrated [5,6] at the cost of
computational power. All such efforts make deconvolution a common post-processing method
for biological applications such as deconvolution of fluorescence microscopy images [7].

On the other hand, the capability of DHM to image and measure amplitude and quanti-
tative phase simultaneously, makes it an attractive research tool in many fields of biological
research [8, 9], since it is marker free, non-invasive regarding the light intensity, and only cam-
era acquisition rate limited. Consequently, attempts have been made to bring the conveniences
of improved resolution to coherent light systems, too.

The general idea is to use degrees of freedom that are deemed unnecessary [10]. For example
they can be in real space [11], in the temporal domain [12], in the spectral domain [13], or in
the polarization [14]. Generally, these methods require alteration of experimental setup with
additional modifications e.g. gratings or mechanically moving parts, giving rise to practical is-
sues. By using the phase-retrieval method of Gerchber-Saxton [15], attempts have been made
to improve time multiplexing [13]. Nonetheless, DHM offers already the intrinsic advantage of
providing the amplitude A as well as the phase Φ from the reconstructed complex field U . Time
multiplexing methods combined with DHM methods have been demonstrated to work with
low-NA systems [16] but still demand of scalability to high-NA. For ’midrange’ systems of
NA=0.42, a resolution improvement of nearly 2 is possible with a synthetic aperture requiring,
however, the use of a detection scan [17]. For aperture synthesis by beam scanning [18], tomo-
graphic diffractive microscopy (TDM) recently showed high-resolution with a ’highrange’ NA
system [19]. Other coherent light methods like structured illumination microscopy (SIM) [20]
use coherent excitation for intensity based fluorescence imaging. Despite demonstration of sub-
wavelength resolution [extended to Abbe’s resolution limit λ/(2NA)] by phase structuring, the
complex detection is only partially used in excitation.

For the first time to our knowledge, we demonstrate coherent sub-wavelength resolution
[λ/(2NA)] with high-NA (NA=0.95) by directly using the information content available from
amplitude as well as from phase in DHM. By adapting mentioned standard deconvolution post
processing methods to coherent illumination imaging conditions, the phase imaging process
does not need to be compromised. No additional optical components nor scanning procedures
are required since the method is applied at a step posterior to the experiment itself. We also
show that the usual trade-off between precision in object localization and Rayleigh’s resolution
criterion [1] can be overcome by the presented method.

The structure of the paper is to give first a theoretical overview of conventional deconvo-
lution, following referred to as ’intensity deconvolution’. From that, the theory of ’complex
deconvolution’ in its physical model is presented in the last part of the 2nd section. In the 3rd

section experimental details are provided and the 4th section shows how to treat the test target’s
and the APSF’s data. Furthermore, the adaption of the synthetic CTF is outlined and used for the
determination of the influence of noise in the 5th section. Also in this section, the final results
are presented and compared to intensity deconvolution. A discussion of the implementation of
complex deconvolution concludes in the 6th section.

2. Theory

Coherent and incoherent imaging systems behave very differently. One simple attribute of im-
age properties is the spectrum of spatial frequencies ν

νc,incoh = 2νc,coh, (1)

which allows double the frequency for an incoherent (incoh) system compared to the coherent
(coh) counterpart [21]. Apart from Eq. (1), the frequency transmission is differently shaped, tri-
angular for incoherent and rectangular for coherent cases of standard imaging. The respective
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shape results in better imaging contrast for coherent systems and a smaller limit of resolution
for the incoherent counterpart. The limit of resolution according to Rayleigh’s criterion of res-
olution is given by:

dmin = α
λ

NA
, (2)

with αcoh = 0.82 and αincoh = 0.61 [22]. Likewise, the wavenumber k is related to spatial fre-
quency ν and wave vector k⃗ = (kx,ky,kz) by

k = ∣k⃗∣ = 2πν =
2π
d

, (3)

where d corresponds to a spatial distance and kc is related to dmin by

kc,coh =
2π

dmin,coh
. (4)

2.1. Inverse filter deconvolution of intensity fields

For a 2D incoherently illuminated imaging system with magnification M, the intensity function
I(x2,y2) in the image plane is presented as a convolution integral (following notation is based
on [23])

I(x2,y2) =∬
∞

−∞

∣h(x1+Mx2,y1+My2)∣
2oi(x1,y1)dx1dy1, (5)

where oi(x1,y1) is the intensity function in the object plane and h(x,y) is the complex point
spread function (APSF). Because of the use of the intensity point spread function (IPSF)
∣h(x,y)∣2, no phase term is included. One can express this in k-space as

J(kx,ky) =C(kx,ky)Oi(kx,ky),

and I(x2,y2) =∬
∞

−∞

J(kx,ky)exp[−i2π(kxMx2+kyMy2)]dkxdky,
(6)

where J, Oi, and C are the 2-D Fourier transform of I, oi, and ∣h∣2, respectively, such as

C(kx,ky) =∬
∞

−∞

∣h(x1,y1)∣
2exp[i2π(kxx1+kyy1)]dx1dy1. (7)

Conventionally, C is called the optical transfer function (OTF), J the intensity image spectrum,
and Oi the intensity object spectrum. For incoherently illuminated imaging systems, the stan-
dard deconvolution approach, namely inverse filtering [7], consists in inverting Eq. (6):

oi(x1,y1) =∬
∞

−∞

Oi(kx,ky)exp[−i2π(kxx1+kyy1)]dkxdky = F
−1{

J̃(kx,ky)

C(kx,ky)
}. (8)

Instead of dividing J(kx,ky) itself, J̃(kx,ky) is introduced with a low-pass filtered spectrum
and permits to suppress noise related spatial frequencies above a maximal wavenumber kmax.

J̃(kx,ky) = J(kx,ky)Γkmax(kx,ky) where Γkmax(kx,ky) =

⎧⎪⎪
⎨
⎪⎪⎩

1
√

k2
x +k2

y⩽ks

fs ks ⩽
√

k2
x +k2

y⩽kmax

0
√

k2
x +k2

y > kmax

(9)
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The interplay of kc, kmax, and ks is discussed in detail in section 5.2. The basic idea of the
function fs is to linearly decrease the frequency values from fs(ks) = 1 to fs(kmax) = 0 within a
small smoothing kernel kmax −ks. The purpose is to smooth the mask’s rim borders in order to
suppress aliasing effects.

Apart from this truncated inverse filtering deconvolution, there exists a variety of more elab-
orated methods [7]. However, for the sake of generality, complex deconvolution is derived ac-
cordingly to Eq. (8). It is conventionally referred as the most ’physical’ method since it consists
only in inverting the imaging process [7].

2.2. Inverse filter deconvolution of complex fields

For a 2D imaging system based on coherent illumination, the complex image function U(x2,y2)
can be expressed as the convolution of the complex object function o(x1,y1) and the APSF [23]:

U(x2,y2) =∬
∞

−∞

h(x1+Mx2,y1+My2)o(x1,y1)dx1dy1, (10)

We express this relation in the Fourier domain again:

G(kx,ky) = c(kx,ky)O(kx,ky),

and U(x2,y2) =∬
∞

−∞

G(kx,ky)exp[−i2π(kxMx2+kyMy2)]dkxdky,
(11)

where G, O, and c are the 2-D Fourier transform of U , o, and h, respectively, such as

c(kx,ky) =∬
∞

−∞

h(x1,y1)exp[i2π(kxx1+kyy1)]dx1dy1, (12)

hence, c is called the coherent transfer function (CTF), G the complex image spectrum and O
the complex object spectrum.

Following the idea of Eqs. (8) and (11), the complex deconvolution can be recast in an easier
expression as a deconvolution with an experimental or synthetic CTF :

o(x1,y1) =∬
∞

−∞

O(kx,ky)exp[−i2π(kxx1+kyy1)]dkxdky = F
−1{

G̃(kx,ky)

c(kx,ky)
}. (13)

The inverse filtering can be performed directly by dividing the two complex fields of G
and c. However, just as the intensity based approach [2], the inverse filtering method in the
complex domain suffers from noise amplification for small values of the denominator of
G̃(kx,ky)/c(kx,ky), especially at high spatial frequencies. Consequently, G̃ is defined accord-
ingly to Eq. (9):

G̃(kx,ky) =G(kx,ky)Γkmax(kx,ky). (14)

The mask Γkmax can be real numbered since zero amplitude annihilates the phase contribution
in Eq. (14). The spectrum of c is accordingly bandwidth limited by dividing G̃ so that only
’unphysical’ frequencies related to noise are truncated. In intensity deconvolution, however,
there is a need for more sophisticated methods [2, 3, 7]: small values within the bandwidth are
still sensitive to noise. We expect complex deconvolution to be less noise sensitive. As men-
tioned, the CTF is rectangularly shaped, hence constant in transmission. The autocorrelation of
the CTF results in a triangular OTF with a linearly decreasing transmission. Therefore, noise is
less amplified in Eq. (13) because division by a very small intensity value in the denominator of
Eq. (13) is improbable, contrary to in the division by the OTF in Eq. (8). Often, additional as-
sumptions (noise’s origin or amplitude) [2, 3, 7] or iterative methods serve to improve intensity
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based deconvolution [5, 6]. The presented complex deconvolution foregoes any assumptions
since it is simply based on inverting image formation from Eq. (10).

3. Experiment

To demonstrate the effectiveness of complex deconvolution, we use a test target consisting of a
thin opaque aluminum film (thickness=100nm) on a conventional coverslip [24]. Nano-metric
apertures (∅nominal=80nm) are drilled with focused ion beam (FIB) milling in the coating and
are placed at very close pitches η . The fabricated pitch is controlled and measured by scanning
electron microscopy (SEM), as shown in Fig. 1.

(a) (b) (c) (d)

60
0n

m

50
0n

m

40
0n

m

30
0n

m

Fig. 1. SEM image of pair of nano-holes drilled by FIB in aluminum film at 100 000×
magnification. The images show nominal center-to-center pitches η of 600nm (a), 500nm
(b), 400nm (c) and 300nm (d) with according scale bars.

The SEM measurements of the diameter ∅ reveals marginally bigger diameters
(∅real ≈90nm) than the nominal ones due to their slightly conical shapes. The real pitch η ,
however, varies only within ±5nm from the nominal specifications.

A single nano-metric aperture can serve as an experimental complex point source for hexp

[24, 25] and its imaged amplitude and phase have been shown to be characteristic [26]. The
differently pitched double hole series (cf. Fig. 1) serve as experimental test targets for U . The
light source is a YAG laser at λ=532nm. The used microscope objective is a Zeiss ×63 NA=0.95
in air (refractive index nm = 1) in combination with a relay magnification to reach a lateral
sampling of δx = 56nm.

4. Processing

The complex field is provided by digital holographic microscopy (DHM) [8] in transmission
configuration. Thus, the amplitude A(x,y) as well as the phase Φ(x,y) of the complex field
emitted by nano-holes can be extracted by following the methods of [8] which is expressed as

U(x,y) = anA(x,y)exp[iΦ(x,y)], (15)

where an is a real normalization constant.

4.1. Experimental APSF

DHM’s feature of digital refocusing is used to propagate the recorded holograms in the focal
plane from which the CTF and OTF can be calculated by Eqs. (12) and (7), respectively. The re-
constructed experimental CTF of the single aperture is called cexp and is illustrated in Figs. 2(a)
and 2(c).

The modulus of cexp describes the system’s transmittance as function of the related wavenum-
ber. The high value for the transmittance of the carrier wave (seen for ∣cexp(kx = 0,ky = 0)∣), i.e.
the background brightness of the image, is specific to the DHM’s dynamic range, ideally from
zero to the sum of the reference and object wave intensities.
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(a) (b)

(c) (d)

Fig. 2. Experimental and synthetic transfer functions in focal plane at λ=532nm and
NA=0.95. The experimental amplitude CTF ∣cexp∣ (a) and phase CTF arg[cexp] (c) are
imaged from a single nano-metric aperture. According to Eq. (22), (b) shows the fitted
synthetic amplitude CTF ∣csyn∣ and (d) its phase part arg[csyn].

The phase of the transmitted wavefronts are shown in parts (c) and (d) of Fig. 2. In the
focal plane, the representation of the wavefront in k-space results in the phase of the focal spot
image. Vice versa, defocusing results in de-phasing of the transmitted wavefront. The effects of
aberration on the system can be seen e.g. the coma as a deformation of the wavefront phase in
Fig. 2(c).

To ensure optimal optical imaging conditions the effective system’s NA must be estimated
from the experimentally reconstructed CTF. The effective NA relates to the discrete spectral
support as [27]

NA =
nmλ
Nδx

mpx, (16)

with a square recording zone of N×N pixels, immersion refractive index nm, and uniform lateral
sampling δx. The discrete spatial bandwidth of the microscope objective corresponds to mpx.
By combining Eq. (3) with Eq. (16), the axes of Fig. 2 are recast into k-space and the effective
NA can be directly read out to be in accordance with the nominal one.

4.2. Synthetic APSF

The complex deconvolution process by the experimental CTF: cexp ought to be compared to a
reference system. This system is based on a synthetic CTF: csyn transformed by Eq. (12) from
a synthetic APSF. The APSF represents a synthesis since the following scalar Debye theory is
computed with experimentally assessed parameters of the optical imaging system.
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For a single point object o(x1,y1) = δ(x1,y1), the image field Uδ (x2,x2) is the APSF
h(Mx2,My2). Therefore, the APSF can be experimentally measured with a sufficiently small
object diameter (∅ << dmin) or synthesized by a theoretical description. A synthetic h for high-
aperture systems can be approximated by the scalar Debye theory expressed in a spherical
coordinate system in Eq. (17) of θ and Φ within the object space

⎧⎪⎪
⎨
⎪⎪⎩

x1 = f sinθcosφ ,
y1 = f sinθsinφ ,
z1 = − f cosθ ,

which satisfies f 2 = x2
1+y2

1+ z2
1, (17)

and thus a polar coordinate system in Eq. (18) within the image space originating in the focus

⎧⎪⎪
⎨
⎪⎪⎩

x2 = r2cosΨ,
y2 = r2sinΨ,
z2,

which satisfies r2
2 = x2

2+y2
2. (18)

The Debye integral results in [23]:

Uδ (r2,Ψ,z2)=
i
λ ∫

2π

0
∫

α

0
P(θ ,φ)exp[−ikr2sinθcos(φ −Ψ)− ikz2cosθ − ikΦ(θ ,φ)]sinθdθdφ ,

(19)
where P(θ ,φ) is the apodization function according to Eq. (20) and Φ(θ ,φ) the aberration
function. Generally, the sine condition holds for an aplanatic imaging system within the field
of view

P(θ ,φ) =
√

cosθ . (20)

Aberrations in high aperture Φ(θ ,φ) may be developed as spherical harmonics in a complete
orthogonal set [28] and are included in our model for the primary aberrations. The 2D APSF
affected by aberration can be calculated at a certain distance z2 relative to the focal plane

h(z2) =∬
Ω

Uδ (r2,Ψ,z2)dr2dΨ. (21)

Finally, the CTF can be synthesized as the 2-D Fourier transform of a synthesized 2D APSF.
In order to correctly model the aberration-affected system, the coefficients An,m of the aber-

ration function Φ have to be adapted in a fitting process. In this optimization process, each cal-
culation of the synthetic APSF is performed by FFT of the pupil function as presented in [29].
For the critical angle of the imaging system of NA=0.95, the vectorial Debye model, also sug-
gested in [29], would be more appropriate since it describes polarization dependent effects [23].
However, for the computation-intensive fitting procedure, the faster scalar model is chosen.

As already pointed out, aberrations will most prominently affect the phase of the CTF. There-
fore, the fitting process is performed in the phase domain and compares the experimental data
with the synthetic phase CTF in a least-square cost functional f :

f (An,m) = ∑
kx,ky

∣arg[cexp]−arg[csyn(An,m)]∣
2, (22)

where the synthetic model csyn is a function of the spherical harmonics with amplitude factor
An,m according to [28]. The global minimum of f is found by a genetic algorithm [30] and the
fine fitting is performed by pattern research [31]. The results are listed in Table 1.
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Table 1. Results of fit of experimental data from optical system at λ=532nm and NA=0.95

aberration spherical harmonics An,m fitted amplitude [10−9]
defocus A2,0 45

primary spherical aberration A4,0 350
secondary spherical aberration A6,0 -600

primary coma A3,1 400
primary astigmatism A2,2 25

The CTF synthesized with the parameters from Table 1 is shown in Figs. 2(b) and 2(d).
The modulus spectra show the same transmittance values and the bandwidths’ sizes agree.
The most prominent difference consists in an asymmetry favoring negative kx wavenumbers
and therefore a direction dependent effect. The model does not include direction dependent
intensity responses which would be suggested by a vectorial influence.

On the other side, the phase part of the fitted spectrum in Fig. 2(d) shows a good agreement
with the experimental one in Fig. 2(c). Since the experimental phase CTF was fitted, the scalar
model manages to create a similar wavefront which does not affect the modulus. In reality,
though, the direction dependent transmittance, seen in Fig. 2(a), is connected to its phase in
part (c) of Fig. 2. Consequently, the estimated spherical harmonics’ prefactors An,m are likely
to be overestimated.

The synthetic CTF allows to model a synthetic test target based on Eq. (21) corresponding to
the experimental test target depicted in Fig. 1:

Usyn = hsyn(x,y+η/2)+hsyn(x,y−η/2). (23)

Most importantly, Usyn and csyn serve as a reference system to determine the influence of noise
on the deconvolution process. Without loss of generality, noise can be added to the synthetic
APSF as a gaussian probability distribution ng and yields the estimation of Unoise by computing
Eq. (23).

4.3. Test target

The fields of the test target have been recorded for all η of Fig. 1 and processed according to the
procedure described in section 4.1. As an illustration, Figs. 3(a) and 3(b) (η=400nm) show the
complex field spectrum G̃ calculated by Fourier transforming the reconstructed complex image
field U .

The amplitude ∣G̃∣ in Fig. 3(a) shows the image spectrum accompanied by two frequency
filters (seen as minimum transmittance) in ky direction. These minimum transmittance filters
can be understood as spectral presentation of the destructive interference between the waves
emitted by the two holes, reported as phase singularities in [32]. The discontinuities in arg[G̃]
[cf. Fig. 3(b)] occurs at spatial positions where the spherical waves emitted from each hole
are out of phase. As reported in [32] the orientation angle θ of those lines of singularities
varies systematically with the pitch η of the two holes. Consequently, the η −θ relationship
corresponds closely to a η − ky relationship meaning that the position of the transmittances
minima varies again as a function of the pitch. Figure 3(c) illustrates the behavior within the
bandwidth. It can be seen that the minimum transmittance position of the filter shifts to higher
frequencies as η decreases. Finally, for η=300nm, the minimum almost reaches ky,c and ∣G̃∣
barely features higher frequency content. The exact maximally possible shift of the minimum
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(a) (b)

(c) (d)

Fig. 3. Experimental transfer functions in focal plane at λ=532nm and NA=0.95 of the test
target (cf. Fig. 1). The Γ-masked amplitude spectrum ∣G̃∣ (a) and phase spectrum arg[G̃]
(b) are illustrated for η=400nm. (c) compares ∣G̃∣ cross-sections in ky for kx = 0 with the
experimental CTF of a single nano-metric hole. (d) shows the same comparison of the
experimental OTF and ∣J̃∣.

transmittance in Fig. 3(c) matches with the largest observable angle θ of the phase singularities.
The corresponding limit of resolution is derived to be [32]

dcd
min =min[

λ
2
(

1
NA
±

Δφ
π
)] . (24)

Note that Δφ indicates an offset phase difference for instance through a longitudinal displace-
ment Δz =Δφλ/(2π). In the case of the used test target of Fig. 1 Δφ yields 0. As a consequence,
the relevant dcd

min corresponds to a minimal distance 64% smaller than suggested by Eq. (2) for
the coherent case and still 24% superior to the corresponding equation for the incoherently
illuminated case. In the event of Δφ ≠ 0, asymmetric phase singularities would appear in the
spatial phase map [32]. As a consequence, the transmittances minima (respectively disconti-
nuities in arg[G̃]) shifts on one spectral side to lower and on the other spectral side to higher
wavenumbers.

Similarly, the spectra ∣J̃∣ are compared with the experimental OTF in Fig. 3(d). It is important
to note that ∣J̃∣ is calculated by Fourier transforming the intensity fields I of Eq. (25),

I(x,y) = ∣U(x,y)∣2, (25)

albeit gained by coherent imaging system according to Eq. (15). That is to say that for the
computation of ∣J̃∣ the data are processed as if they originated from an incoherent imaging
system as in Eq. (5). The purpose of this approximation is to compare the performance of this
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’improper’ intensity deconvolution to proper complex deconvolution, and in particular to erode
the phase’s role.

5. Results

5.1. Complex and intensity deconvolution of test targets

x

y

0.5μm      rw

x

y

0.5μm      cd

x

y

0.5μm      rw

x

y

0.5μm      cd

x

y

0.5μm      cd

x

y

0.5μm      rw

x

y

0.5μm      rw

x

y

0.5μm      cd

(c) (d)

(b)(a)

Fig. 4. Comparisons of unresolved and super-resolved profiles of two nano-holes of test tar-
get (cf. Fig. 1) with center-to-center distances η=600nm in (a), η=500nm in (b), η=400nm
in (c), and η=300nm in (d). The raw data images I are reconstructed in the focal plane
at λ=532nm and NA=0.95 (dmin,coh=460nm). The ’raw’ profile shows the central y cross-
section of the resolution limited raw data I (cf. ’rw’ insert). The ’deconvolution complex’
profile shows the corresponding section of ∣o∣2 (cf. ’cd’ insert) resulting from complex de-
convolution by the experimental CTF. Additionally, ’deconvolution intensity’ compares the
profile of oi resulting from intensity deconvolution by the experimental OTF.

The raw images show the intensities I of two PSF above [cf. Figs. 4(a)–4(b), inserts ’rw’] and
beneath [cf. Figs. 4(c)–4(d), inserts ’rw’] the coherent limit of resolution dmin,coh=460nm. It can
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Table 2. Results of peak-to-peak (p-t-p) distance measurements of the test target at
λ=532nm and NA=0.95. The standard precision is based on the lateral sampling of 56nm,
the complex deconvolution is determined in Fig. 5(d)

SEM measurement (η ±5)[nm] 600nm 498nm 403nm 304nm
raw (p− t − p±56)[nm] 629 448 – –

contrast [%] 60 22 – –
FWHM [nm] 230 285 – –

intensity deconvolution (p− t − p±56)[nm] 629 452 – –
[vide Eq. (8)] contrast [%] 77 50 – –

FWHM [nm] 223 233 – –
complex deconvolution (p− t − p±25)[nm] 594 482 372 275

[vide Eq. (13)] contrast [%] 80 96 69 25
FWHM [nm] 224 196 182 141

be seen that the PSF pairs beneath dmin,coh converge and cannot be distinguished anymore by
the contrast criterion. The inserts labeled ’cd’, though, show the intensity images ∣o∣2 complex
deconvolved with kmax (deduced in section 5.2). In the profile plot, I and ∣o∣2 are compared to
intensity deconvolved images oi along the y cross-sections through the pitch centers. The exact
results are listed in Table 2.

It shows that both deconvolution methods manage to improve the contrast of the η=500nm
and η=600nm image. The contrast is higher for complex deconvolution whilst holding a more
accurate match on the actual pitch η . For the case of η=400nm the intensity deconvolution fails
to resolve individual peaks. Despite being beyond dmin,coh=460nm, the coherent deconvolution
method results in a correct localization within 25nm while holding a contrast of 69%. However,
the deconvolved image suffers from a residual artifact which is caused by a mismatch during
the DHM reconstruction procedure [8]. The final test target measurement of 300nm lies just at
the edge of the new limit of resolution derived in Eq. (24). The peak is clearly observable in
the cross-section, however, in the image itself the mentioned DHM reconstruction mismatch
causes too many artifacts, so that the two peaks are not clearly recognizable any more.

5.2. Determination of kmax and noise influence

The choice of correct mask radius kmax is crucial to avoid cropping information or adding
noise. The mask radius is related to Eq. (4) meaning that it can be chosen based on the minimal
structure dmin to be resolved which must fulfill at least kmax ⩽ kc. It is not trivial, though, to
decide to which extend the filter’s diameter can be enlarged.

In order to address this question, the fields of the test target were deconvolved while vary-
ing the filter’s diameter kmax [expressed as the according minimal resolvable distance dmin by
Eq. (4)]. Note that the smoothing is fixed to a small value ks = 2π/(dmin −60nm). For the re-
sults analysis, the deconvolved amplitude fields (cf. Fig. 4) are interpolated and fitted by two
gaussian curves:

g(x) = a1exp[
(x−μ1)

2

2b2
1

]+a2exp[
(x−μ2)

2

2b2
2

] . (26)

The positions of μi provide the peak-to-peak (p-t-p) distance of the holes’ images. Assuming
equivalent transmittance of the imaged holes’ pairs, the effective full width at half maximum
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Fig. 5. Influence of kmax(dmin) on complex deconvolution results according to Eq. (4).
(a-c) statistics for η=400nm for deconvolution of Uexp with cexp ’experimental’, for de-
convolution of Uexp with csyn ’experimental-synthetic’, for deconvolution of Usyn with csyn

’synthetic (no noise)’ , and deconvolution of Unoise with cnoise ’synthetic (SNR=35)”. (d)
statistics of p-t-p in dependence of dmin for all targets η . The grey bars indicate error margin
of 25nm.

(FWHM) is averaged for b1 and b2 and determined from Eq. (26) as Eq. (27):

FWHM =
√

2ln2(b1+b2). (27)

The contrast is calculated by the ratio of the minimum value between the two maxima values
of a1 and a2.

The results are shown in Figs. 5(a)–5(c) for the exemplary case of η=400nm. The nota-
tion is as following: The legend ’experimental’ indicates complex deconvolution of Uexp with
cexp. Contrarily, the legend ’synthetic(. . .)’ indicates the usage of synthesized fields and CTFs
according to section 4.2. For indicator ’. . .(no noise)’ Eqs. (19) and (23) are free of noise,
whereas gaussian noise was added successively for the indicator ’. . .(SNR=35)’ with the ac-
cording signal-to-noise ration (SNR). Finally, the case ’experimental-synthetic’ represents a
hybrid, the complex deconvolution of the experimental fields by the synthetic noise free CTF.

First of all, Fig. 5(a) demonstrates the impact of noise. The bending of the p-t-p curve in-
dicates a dependence of the measured p-t-p distance on kmax(dmin). This trend is strongest for
the ’experimental’ plot. On the contrary, the fully ’synthetic (noise free)’ deconvolution shows a
weak dependence which suggests noise as a source of the dependence trend. A stronger bending
of the p-t-p curve for smaller dmin can be created by adding noise to the ’synthetic(SNR=35)’ de-
convolution. Vice versa, the ’experimental’ dependence becomes weaker for the ’experimental-
synthetic’ deconvolution but suffers from a vertical upward shift which may result from a mod-
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eling mismatch of hsyn. Finally, the filter’s radius dependence can be partially decoupled by
using a noise free synthetic CTF, as expected for the use of synthetic OTF in intensity decon-
volution [2, 7].

It is in principle desirable to choose the filters’ radii as high as possible, in the limit of a
’correct’ p-t-p distance. Figure 5(b) shows a general contrast trend of the deconvolved images
in which all cases have in common: the higher the frequency content, the better the contrast.
This observation is in accordance with Fig. 5(c) showing clearly the inverse trend of FWHM:
peaks become narrower with bigger filter radii. For the ’experimental-synthetic’ case the trend
of FWHM and contrast is perturbed. At about dmin ≈ 380nm, the trend of increasing contrast is
damped [cf. Fig. 5(b)] since the FWHM’s trend of narrowing stagnates [cf. Fig. 5(c)]. It is most
likely that artifacts caused by the modeling mismatch lead to the (trend opposed) broadening.

In our case, we define a precision of ±25nm (about half δx) of the p-t-p distance as acceptable
in order to minimize the FWHM or, in other words, to maximize the contrast. This error margin
is indicated in Fig. 5(d), which shows the p-t-p distances for the 4 ’experimental’ cases of the
test target. According to the defined criterion, it can be seen that an unique filter diameter can be
assessed. Moreover, a trend of kmax is clearly observable: the optimal filter diameter corresponds
to wavenumbers corresponding roughly to (150±30)nm beneath the minimal structure η to be
observed. This trend responds to the hypothesis kmax≈k(η −150nm) if η < dmin.

6. Discussion

In this section, effects and mechanisms of complex deconvolution are discussed and its limita-
tions are under debate. The method is classified and the effectiveness of different approaches is
compared. Finally, an outlook of generality is given.

At a first glance, the deconvolved phase spectrum [cf. Figs. 6(a) and 6(b)] appears more even
than compared to the original spectrum [cf. Figs. 3(a) and 3(b)]. In particular, the phase in
kx direction indicates an aberration correction. The mean deconvolved spectrum transmittance
drops down to ∼0.6, therefore appearing to wane. Division, in the frequency domain, by very
small values of the CTF gives rise to large transmission values [cf. Fig. 6(a)]. Those ’bad’
pixels can also be seen in the phase spectrum [cf. Fig. 6(b)] as local pixel phase jumps. Since
these local pixel phase jumps occur randomly or close to weak signal strengths, they can be
considered as an effect of noise on the CTF. Just as it is known from intensity deconvolution [2],
the bigger kmax is chosen, in order to resolve smaller dmin, the better the SNR must be.

The origin of the gain in resolution is a stronger spectral support at high frequencies in the
spectrum after deconvolution [cf. Figs. 6(a) and 6(b)]. The cross section in Fig. 6(c) compares
the profiles of spectra before [cf. Figs. 3(a) and 3(b)] and after [cf. Figs. 6(a) and 6(b)] decon-
volution. The same is shown for intensity deconvolution in Fig. 6(d). The comparison between
Figs. 6(c) and 6(d) highlights that only the complex deconvolved spectral support in Fig. 6(c)
is increased and frequencies above the cutoff are added giving rise to the gain in resolution.
However, plot (c) of Fig. 6 is not a sufficient proof of improved resolution since already adding
a constant frequency could lead to a similar result. The ’real’ resolution improvement results
from the frequency pattern in Fig. 6(a) which exhibit an accurately restored continuous fre-
quency content. The reason for this behavior lies in the phase discontinuity seen in Fig. 6(b)
that shifts the phase spectrum by π . This shift extends the spectrum continuously to higher
frequencies.

Apparently, this mechanism fails for the intensity deconvolution [cf. Fig. 6(d)]. Moreover, the
frequencies related to resolution exceeding the Rayleigh limit are located at higher frequencies
thus making them more sensitive to noise. Vice versa, due to the shift toward lower frequencies,
the complex spectrum is less sensitive to noise. Consequently, as long as the image spectrum
contains sufficient spectral support higher than the minimal transmittance [cf. Figs. 3(c) and
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Fig. 6. Experimental transfer functions in focal plane for λ=532nm and NA=0.95 of test
target (cf. Fig. 1) after deconvolution. The amplitude spectrum ∣O∣ (a) and phase spectrum
arg[O] (b) are illustrated for η=400nm after division by CTF. (c) compares ∣O∣ cross-
section in ky for kx = 0 with G̃ for the η=400nm case. (d) shows the same comparison for
∣Oi∣ and ∣J̃∣.

3(d)] the image is notably improved in resolution and contrast (cf. Fig. 4). For the η=300nm
case the higher frequencies are almost cut off. Only a ’small’ peak is recovered which may be
subject to noise and to model mismatch. The model sensitivity is reflected in the accuracy of
the related p-t-p distance (see Table 2) which decreases towards η=300nm. In the same way, it
holds for the decreasing contrast.

The effectivity of the complex deconvolution is summarized in Fig. 7. First of all, the merged
PSF of the resolution limited system is shown in Fig. 7(b). Even if intensity deconvolution
[cf. Fig. 7(c)] results in narrower FWHM, the resolution is not improved. On the other hand,
complex deconvolution by the experimental CTF succeed in resolving the individual peaks [cf.
Fig. 7(e)]. Complex deconvolution by a noise free synthetic CTF [cf. Fig. 7(d)] is capable of
resolving them as well. The mismatch of the model with experimental data, however, results in
an overestimation of η . In Fig. 7(d) it appears that the FWHMs tend to be very slim but artifacts
cause a broadening and worse contrast as confirmed by Figs. 5(b) and 5(c). Thus, no real image
improvement is achieved since the model mismatch causes severe artifacts. Finally, complex
deconvolution by the experimental CTF holds the best match on η .

The customized test target of Fig. 1 has been specially designed to prove feasibility and to
analyze the functionality of complex deconvolution. While the theory is derived from a gen-
eral coherent imaging point of view, the used test target allows studying the practical role of
sample internal coherent cross-talk as an essential part of the coherent imaging process. It is
observed that the occurrence of discontinuities in the phase spectrum greatly supports resolu-
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Fig. 7. XY images in focal plane of test target with sub-resolution pitch η=400nm [cf.
insert (a) imaged by SEM]. Insert (b) shows the unresolved test target’s raw image I at
λ=532nm and NA=0.95. Insert (c) shows oi resulting from intensity deconvolution. Insert
(d) shows ∣o∣2 resulting from complex deconvolution by the synthetic CTF and insert (e)
the according result for deconvolution by the experimental CTF.

tion improvements through complex deconvolution. In the sample specific case of Δφ = 0, the
limit of resolution is shown to be extended by a factor of 1.64 as anticipated by Eq. (24).

In a more general consideration, any non-transparent object could be thought to be composed
of a three dimensional distribution of scatterers. For instance, through a longitudinal displace-
ment Δz, an arbitrary phase offset difference Δφ ≠ 0 between point-scatterers would be created.
As underlined in test target specific section 4.3, any Δφ would result in at least one spectrally
lower shifted phase discontinuity. We suspect that it could give rise to even higher resolution,
scaling accordingly to Eq. (24). Similarly, for the case of phase objects, the occurrence of phase
singularities has been reported [33] which may also result in the appearance of spectral phase
discontinuities and eventually image resolution improvements.

However, since the presented theory is not limited to spectral phase discontinuities, reso-
lution beyond Eq. (24) is imaginable. The behavior of η = 300nm sample’s complex decon-
volution suggests that the use of a noise free synthetic CTF should be advantageous since the
SNR becomes much more crucial in the spectral sub-discontinuity range. As pointed out in sec-
tion 4.2, a vectorial CTF [34] may be more suitable to effectively avoid the discussed artifacts.
A direct calculation of its vectorial components [35] may allow a fast implementation.

7. Conclusion

We have discussed a general theory for complex deconvolution that excludes noise by truncat-
ing high spatial frequencies without any further assumptions on the noise source. The theoret-
ical consideration is based on the assumption that each sub-Rayleigh object acts as a spherical
wave emitter accordingly to Huygens’ principle. In the classical imaging formalism for in-
coherent light, those emitters do not interact and are simply imaged as an ensemble of PSFs.
Consequently, the intensity deconvolution mechanism works well as long as the interference in-
teraction between the scatterers is small. Beyond that limitation, intensity deconvolution results
in an incorrect evaluation of the scatterers’ positions and their contrasts vanish.

Nonetheless, within the original passband of the imaging system, there exists information
that originates from the objects’ scattered light and lies outside the bandpass: the phase discon-
tinuities. Coherent imaging bears the capability of recovering such intrinsic data derived from
interferences in order to improve the resolution beyond the Rayleigh limit. This paper demon-
strates experimentally the effectiveness of complex deconvolution for the developed test target
of known structure. The results indicate that using complex deconvolution with an experimental
CTF can increase resolution whilst localizing the objects within ±25nm. Moreover, image im-
provement for complex deconvolution using a synthetic CTF is, in principle, possible as well.
However, a very exact adaptation of the model to the experimental data is crucial. The phase
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fitted CTF allows to characterize the imaging system and demonstrates the noise’s influence
during the complex deconvolution.

In conclusion, the complex deconvolution method results in comparable or better resolution
for coherent optical systems than normally achieved for incoherent optical system. The coher-
ent optical system’s lateral resolution is demonstrated to be almost doubled through complex
deconvolution. It is a post-processing method that does not require any modification of the setup
and is best suitable for methods providing complex fields such as DHM.
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