Model EQ-99
LDLS™
Laser-Driven Light Source

Operation and Maintenance Manual

Revision 4 August 2011

Part Number DOC-4957
Declaration of Conformity

We, the manufacturers

Energetiq Technology Inc.
7 Constitution Way
Woburn, Massachusetts USA

hereby declare that the product family

LDLS™ Laser-Driven Light Source
Model EQ-99 High Brightness Broadband Light Source

is in conformity with the requirements of the following standards

CISPR 11:2003 Industrial, scientific and medical equipment - Radio-frequency disturbance characteristics - Limits and methods of measurement
IEC61000-4-2:2001 Electrostatisic Discharge Immunity
IEC61000-4-3:2002 Radiated Electromagnetic Field Immunity
IEC61000-4-6:2003 Radio Frequency Common Mode Immunity
IEC61000-4-8:1994 Power Frequency Magnetic Field Immunity
EN61326-1:2006 Electrical equipment for measurement, control and laboratory use. EMC requirements. General requirements

in accordance with the provisions of

2006/95/EC EU Low Voltage Directive

Signed,

\[Signature\]

Paul Blackborow, CEO

Date

12/16/10

at Woburn, Massachusetts USA
TABLE OF CONTENTS

Chapter 1 .. 1
 General Information ... 1
 Safety ... 1
Chapter 2 .. 7
 Description ... 7
 General ... 7
 Specifications ... 7
 System Description .. 9
 Power Supply Controller ... 10
 Lamp House .. 12
Chapter 3 .. 15
 Installation ... 15
 Unpacking .. 15
 Connections ... 15
 Installation Procedure .. 21
Chapter 4 .. 23
 Operation .. 23
 Starting .. 23
 Stopping .. 23
Chapter 5 .. 25
 Maintenance .. 25
 Fiber Cleaning Process .. 25
 Troubleshooting ... 28
 Lamp Replacement .. 29
Chapter 1

GENERAL INFORMATION

Safety

WARNING

This unit emits ultraviolet (UV) radiation that is harmful to humans. Avoid exposure to the direct or reflected output beam. Make certain that the appropriate output beam shields and optics are in place prior to energizing the unit. All interlocks must be satisfied prior to operation; failure to do so may lead to hazardous conditions.

CAUTION

The EQ-99 emits dangerous levels of UV radiation. Even short exposures to skin or eyes may cause burns. Ensure that only authorized personnel are in the vicinity of source during operation. Personnel in vicinity of operating source should wear protective eyewear, clothing, and gloves. Lighted UV warning lights and signs posted on doors to lab areas may help prevent accidental exposure.

WARNING

The EQ-99 controller utilizes an internal Class 4 IR laser capable of causing severe injury to eyes or skin. Do not open or attempt to service this unit. Contact Energetiq regarding any problems with the unit.
General Precautions

The output beam from the EQ-99 should be blocked when not in use with an electronic shutter or other appropriate beam blocking device. Due to the possibility of generating ozone when ambient oxygen is exposed to short wavelength light, the beam should always be enclosed in an appropriate beam pipe, tube, or enclosed space. We suggest purging any beam transport space with dry nitrogen gas.

The EQ-99 source must also be cabled correctly and connected to a socket with a protective earth ground prior to operation.

Refer to the Installation section of this manual (Chapter 3) for details of the facilities connections.

Other than a bulb replacement, there are no user-serviceable parts inside the EQ-99. For any problems encountered during operation, please contact Energetiq Technology for assistance. **If there is a component failure, do not attempt to open the Power Supply Controller or Lamp House enclosure of the EQ-99.**

The EQ-99 utilizes a quartz lamp containing a high-pressure gas fill. Explosion of the lamp and possible injury from flying fragments can occur if the lamp is mishandled.

Do not open the enclosure of either the Lamp House enclosure or the Power Supply Controller. **Dangerous invisible infrared laser beams and hazardous voltages exist inside the units.** Opening the chassis both voids the warranty and exposes the user to dangerous radiation and hazardous voltages.

CAUTION

Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.
Laser Information

The EQ-99 uses a patented (U.S. Patent #7,435,982, others pending) laser drive system to excite a plasma that radiates in the UV as well as the visible bands. A class 4 laser is located in the Power Supply Controller enclosure. Laser energy is delivered via an armored fiber to the Lamp House enclosure and connected with an SMA-type connector. Safety interlocks shut down the laser power if the SMA connector is removed from the Lamp House enclosure. The optical configuration of the Lamp House ensures that the direct laser beam can not exit the unit. The EQ-99 laser product is designated as Class 1 during all normal operation.

The parameters of the non-accessible internal laser are given below in Table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>974 nm</td>
</tr>
<tr>
<td>Emission Type</td>
<td>CW</td>
</tr>
<tr>
<td>Laser Power for classification</td>
<td><8 mW via 7mm measurement aperture</td>
</tr>
<tr>
<td>Beam Diameter</td>
<td>~29 mm at aperture</td>
</tr>
<tr>
<td>Divergence</td>
<td>>100 mRad</td>
</tr>
<tr>
<td>Transverse Beam Mode</td>
<td>Diffuse</td>
</tr>
</tbody>
</table>

Table 1: Embedded Laser Parameters

No regular service is required for the EQ-99. Any service to the system must be performed only by factory authorized and trained technicians. To avoid injury, under no circumstances should the user open or modify the Lamp House or Power Supply Controller enclosure.

The unit must not be operated if the covers are removed or it is defective in any way. Contact Energetiq if any problems with the equipment are suspected.

Labels and Safety Notification

The following safety labels appear on the product. Figure 1 shows the location of each label on the EQ-99 system.

UV Hazard warning label – indicates hazardous levels of UV light are present.
Manufacturer’s identification label – gives the manufacturer’s name and address, and the model, serial number, and date of manufacture of the equipment.

Explanatory label – states the classification of the laser product. Class 1 is the lowest hazard level classification.

Certification label – states that the equipment has been tested and verified to meet the standards indicated.

Non-interlocked housing label – notifies of a potential hazard when covers are removed.
Safety Interlocks

The EQ-99 is equipped with interlocks to prevent operation of the device when the following conditions are present

1. Bulb is not installed into the Lamp House enclosure
2. The laser fiber is not connected to the Lamp House enclosure
3. An external interlock is open
External Interlock

External interlock pins are provided for the customer’s use (see Chapter 3 for connection details). Any suitable normally-open contact or solid-state switch can operate the interlock circuit.

The interlock circuit must be connected to enable the operation of the unit. Should the interlock connection open during operation or standby, the source is immediately disabled, and all light output from the aperture ceases.
Chapter 2

DESCRIPTION

General

The EQ-99 is a broad-band lamp system for use in a wide variety of applications. The lamp produces high brightness, broad-band light from DUV wavelengths through visible and beyond. The output is very stable, and has a long lifetime before any service is required. A simple control interface ensures ease of use.

Some of the advantages of the EQ-99 include:

- Very high brightness across complete spectrum
 - 170nm through visible and beyond
- Eliminates need for multiple lamps (replaces D2/Tungsten/Xenon Arc)
 - Simplified optical system
- Excellent spatial stability
 - Repeatable measurements
- Superior short and long term power stability
 - Repeatable measurements
- Electrodeless operation for long life
 - Reduced consumable costs
 - Minimal recalibration of instrument

The EQ-99 system consists of a Power Supply Controller unit, Lamp House unit, and interconnecting cables. Connection to DC power is required for operation. Connection to nitrogen purge gas is optional, but recommended for best performance. See Chapter 3 for connection details.

Specifications

Optical Performance

- Typical output spectrum: see Figure 2.
Figure 2: Typical Output Spectrum

Physical Specifications

Dimensions (H × W × D)
- Lamp House: 82 x 86 x 76 mm (3.2 x 3.4 x 3.0 in)
- Power Supply Controller: 140 x 108 x 254 mm (5.5 x 4.2 x 10.0 in)

Weight
- Lamp House: 0.7 kg (1.5 lbs)
- Power Supply Controller: 2.2 kg (5.0 lbs)

Utility Requirements
- Electrical: 24VDC, 125W
- Cooling: natural convection and internal fan, no auxiliary cooling necessary
- Purge gas (optional): clean dry nitrogen, 20 psig (0.14 MPa) supply pressure

Remote Interface

Digital Inputs
- Type: Optocoupler LED
- Logic: Active High
- Input voltage: 5VDC
- Input current: 8mA

Digital Outputs
- Type: Open collector to ground (digital common)
- Logic: Active Low
- Voltage: 30VDC max.
- Sink current: 30mA max.

User Power
- Voltage: 5VDC, referenced to digital common
- Current: 50mA maximum

Environmental Requirements

Operating
- Ambient temperature: 15–35°C
- Relative Humidity: non-condensing, 80% max. for temperatures up to 31°C, decreasing linearly to 50% max. at 40°C.
- Pollution Degree 2 (normally only non-conductive pollution; occasional, temporary condensation possible)
- Installation Category II
- Indoor use only

Transport
- Temperature: -5–95°C
- Relative Humidity: non-condensing, 95% max.

System Description
As shown in Figure 3 the EQ-99 system consists of a Power Supply Controller unit, Lamp House, laser fiber optic cable, and Lamp House signal cable (not shown). Power and I/O interface connections (also not shown) are provided by the user.

The following sections provide descriptions of the system components and controls, and gives an overview of their functions. Refer to the “Installation” section of this manual (Chapter 3) for more detailed information.
The Power Supply Controller contains:

- IR Diode Laser
- Laser power supply
- Thermo-electric cooler for laser
- Permanently attached, armored laser fiber optic cable
- Control electronics
- Status indicator LEDs
- Interface connectors
Rear panel features (refer to Figure 3):

Status Indicator LEDs

These five LEDs indicate the system status. The function of these indicators is shown below in Table 2.

<table>
<thead>
<tr>
<th>LED Label</th>
<th>Meaning (when lit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER ON</td>
<td>DC power is connected to the EQ-99 Power Supply Controller</td>
</tr>
<tr>
<td>LAMP ON</td>
<td>UV Light is on</td>
</tr>
<tr>
<td>LASER ON</td>
<td>Laser power is ON and laser light is being delivered to the Lamp House</td>
</tr>
<tr>
<td>CONTROLLER FAULT</td>
<td>One of the following has occurred in the Power Supply Controller:</td>
</tr>
<tr>
<td></td>
<td>1. External interlock open</td>
</tr>
<tr>
<td></td>
<td>2. Controller internal temperature too high</td>
</tr>
<tr>
<td></td>
<td>3. Loose or missing cover</td>
</tr>
<tr>
<td></td>
<td>4. Laser power not reaching setpoint</td>
</tr>
<tr>
<td>LAMP MODULE FAULT</td>
<td>One of the following has occurred in the Lamp House module:</td>
</tr>
<tr>
<td></td>
<td>1. Lamphouse internal temperature too high</td>
</tr>
<tr>
<td></td>
<td>2. Laser fiber not correctly connected</td>
</tr>
<tr>
<td></td>
<td>3. Bulb not correctly installed</td>
</tr>
</tbody>
</table>

Table 2: Status Indicator LED Functions

Input/Output (I/O) Connector

Provides access to control and status signals. See Chapter 3 for pin assignments and functions.

This is the only operator interface to the EQ-99 – there are no local controls. Energetiq offers the EQ-99-RC Remote Control Module which connects to the Input/Output connector and provides a means of local control. Contact Energetiq for additional information.
Power Input Connector

This is the input connector for 24 VDC power. Power can be provided using the optional EQ-99-PS001 (US and Japan) or EQ-99-PS002 (Europe). Alternatively, the EQ-99 can be powered directly from a customer provided 24VDC power supply. See Chapter 3 for detailed information.

Lamp House Signal Connector (mini D sub – 9-pin)

Provides various power and control signals to/from the Lamp House module. No other connector or cable may be used with the EQ-99 other than the one supplied.

Armored Laser Fiber

The laser light is delivered from the Power Supply Controller to the Lamp House via a fiber optic cable with armored protection. It is critical that this armored fiber be treated with care and inspected for any abnormalities prior to operation. The fiber is permanently attached to the Power Supply Controller, and connected to the Lamp House by an SMA-type connector.

Lamp House

The Lamp House assembly contains:

- Lamp
- Igniter
- IR pumping optics
- Output window
- Laser ON indicator
- Interface connectors
External features (refer to Figure 4):

Lamp Window

The lamp window at the optical output provides protection from the high pressure bulb inside the Lamp House. An internally-threaded SM1 adapter is provided for easy connection of optical hardware.

Nitrogen Purge Inlet

This is the inlet fitting for nitrogen purge gas. Purge gas is optional but is recommended for best performance. With no purge, ozone will form from atmospheric oxygen and attenuate the light output in the 220 – 280nm band. In addition, atmospheric oxygen and water vapor will attenuate the output below 200nm.

There is no return fitting for the purge nitrogen. The purge flow normally escapes within the Lamp House enclosure, and then to atmosphere.
Laser Input

This is the inlet connector for the armored fiber from the Power Supply Controller. It contains a set of interlock pins that disable the laser when the SMA connector is not properly in place.

Laser On Indicator

This LED is illuminated when the laser is ON.

J4 Signal Connector (mini D sub – 9-pin)

Provides various power and control signals to/from the Power Supply Controller. No other connector or cable may be used with the EQ-99 other than the one supplied.
Unpacking

Upon arrival, start by inspecting all parts of the system for completeness and any damage incurred in shipping. The EQ-99 shipping box should contain:

1) EQ-99 Power Supply Controller unit
1) EQ-99 Lamp House unit
1) Black interconnecting cable from Lamp House to Power Supply Controller (9 pin mini D-sub).

OPTIONAL
1) EQ-99-RC Remote Control Module with interlock connector
1) I/O cable with 15 pin D- connector at each end
1) 24 VDC Power Supply (universal input voltage)

If any part is missing or appears damaged, contact Energetiq immediately. Do not attempt to substitute any parts. There are no user-serviceable parts inside the EQ-99 Lamp House or Power Supply Controller unit.

Connections

Installation of the EQ-99 consists of connecting electrical and gas supplies, and connecting the Lamp House module to the user’s equipment.

Electrical Power

The EQ-99 requires 24VDC at 6.0A minimum (150W rating). Power consumption is approximately 100W during normal operation.

Power can be provided using the optional EQ-99-PS001 (US and Japan) or EQ-99-PS002 (Europe). Alternatively, power can be provided directly via a customer provided 24VDC power supply. Connect to a 24VDC source as follows:

<table>
<thead>
<tr>
<th>Connector</th>
<th>Kycon KPPX-4P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pins 3 & 4</td>
<td>+24VDC</td>
</tr>
<tr>
<td>Pins 1 & 2</td>
<td>24VDC return</td>
</tr>
</tbody>
</table>
Purge Gas

Purge gas is optional but is recommended for best performance. With no purge, ozone will form from atmospheric oxygen and attenuate the light output in the 220 – 280nm band. In addition, atmospheric oxygen and water vapor will attenuate the output below 200nm.

If required, connect a source of nitrogen purge gas to the port on the Lamp House. The fitting is a push-to-connect type, sized for 4 mm tubing.

Clean and dry nitrogen from either a dewar or research-grade N₂ bottle is recommended. Do not use any other purge gas. Grade 6 or better gas purity is recommended to maintain cleanliness of the optics. Supply pressure should be 20 psig (0.14 MPa). With a 20 psig inlet pressure, the EQ-99 will consume approximately 1 slm of flow.

There is no return fitting for the purge nitrogen. The purge flow normally escapes within the Lamp House enclosure, and then to atmosphere.

Optical Interface

The lamp window accommodates a light output of 0.47 NA. A pair of pins and a 6-32 threaded hole are available for mounting. An internally-threaded SM1 adapter is provided for connection of optical hardware. See Figure 5 below for mechanical layout of the Lamp House.
Figure 5: Lamp House mechanical layout
Figure 6: Power Supply Controller mechanical layout
Signal Connections

The EQ-99 is controlled through the remote I/O connector.

Table 3 gives the pin assignments and functions for this interface. Connect to the user’s control system using a suitable cable. Mating connector is a standard high-density 15-pin d-sub male (for example, Amp part no. 748364-1 with contacts 1658670-2).

Optionally, connect a model EQ-99-RC remote control module to the I/O connector using the supplied cable.

User I/O can be powered either by the EQ-99 internal isolated power supply, or an external supply.

Figure 7 shows connection schematics for both configurations.

<table>
<thead>
<tr>
<th>Description</th>
<th>Pin #</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commands (Inputs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAMP ENABLE</td>
<td>11</td>
<td>LAMP ENABLE REQUEST, apply +5V (referenced to digital common) to enable lamp ignition</td>
</tr>
<tr>
<td>LAMP OPERATE</td>
<td>12</td>
<td>OPERATE REQUEST, apply +5V (referenced to digital common) to initiate ignition (must be after Lamp Enable Request)</td>
</tr>
<tr>
<td>EXTERNAL INTERLOCK</td>
<td>13</td>
<td>EXTERNAL INTERLOCK, apply +5V (referenced to digital common) to close interlock and allow operation</td>
</tr>
<tr>
<td>Status Indicators (Outputs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAMP ON</td>
<td>1</td>
<td>Pulled to digital common when ON</td>
</tr>
<tr>
<td>LASER ON</td>
<td>2</td>
<td>Pulled to digital common when ON</td>
</tr>
<tr>
<td>LAMP MODULE FAULT</td>
<td>3</td>
<td>Pulled to digital common when OK, float on FAULT</td>
</tr>
<tr>
<td>CONTROLLER FAULT</td>
<td>4</td>
<td>Pulled to digital common when OK, float on FAULT</td>
</tr>
<tr>
<td>ISOLATED +5V SUPPLY</td>
<td>5</td>
<td>250mW capable, thru 100 ohms, referenced to digital common</td>
</tr>
<tr>
<td>DIGITAL COMMON</td>
<td>6,7,8,9</td>
<td>Galvanically isolated from system</td>
</tr>
<tr>
<td>RESERVED</td>
<td>10</td>
<td>Do not connect</td>
</tr>
<tr>
<td>RESERVED</td>
<td>14,15</td>
<td>Do not connect</td>
</tr>
</tbody>
</table>

Table 3: I/O Connector Pin Assignments
Figure 7: Remote Interface Schematic
Installation Procedure

1. Mount the Power Supply Controller unit rigidly to either an optical breadboard plate or another suitable mounting structure using the supplied tabs on the bottom of the chassis. The holes are sized to accept standard ¼-20 optical bench hardware, and spaced to be compatible with a standard 1” grid mounting hole pattern. See Figure 6 for dimensional and mounting details.

2. Connect the Lamp House unit output to the user equipment. The beam should always be either directly coupled to a fiber optic cable, or enclosed in an appropriate beam pipe, tube, or enclosed space and purged with nitrogen. Operating the source without any output target or beam transport is not recommended, and may lead to unsafe operating conditions. Consult Energetiq for applications information and suggested configurations.

The Lamp House should be mounted in the orientation shown in Figure 5, with the output window on the side and the flat surface of the housing on the bottom. The lamp has been factory aligned in this position. Mounting the lamp in a different orientation will cause the plasma position inside the bulb to shift slightly. If using an optical fiber for the light output, this will result in slight misalignment and a resulting drop in output power.

3. Setup the Lamp House unit with appropriate ultraviolet safety measures and laser light safety measures in place. It is recommended that any enclosure or aperture-blocking hardware utilize switches wired to the EQ-99 external interlock circuit.

4. Place the Power Supply Controller close to the Lamp House unit. Do not block the air vent of the Power Supply Controller.

5. Connect the black 9 pin mini D-sub interconnect cable from the Power Supply Controller (labeled TO LAMP) to the Lamp House (labeled J4).

6. The EQ-99 is delivered with the armored laser fiber connected to the lamp house. This is done to minimize the possibility of debris or particles contaminating the end of the laser fiber. Energetiq strongly recommends leaving the laser fiber connected, unless it is necessary to disconnect it for installation or routing of the laser fiber. If the laser fiber must be disconnected, apply SMA caps immediately to both ends, and follow directions on inspection and cleaning of the laser fiber described in Chapter 5.

7. If necessary, connect the SMA connector to the Lamp House laser input and tighten.

8. If required, connect nitrogen purge gas to the Lamp House. Refer to “Facilities Requirements” above.

9. Connect user’s control system to the I/O interface connector per

10. Alternately, if using the EQ-99-RC Remote Control Module, place it on a clean rigid surface. Install the supplied 15-pin cable from the Power Supply Controller to the EQ-99-RC.

11. Connect 24VDC input power source to the Power Supply Controller.
The system is now ready to operate.
Chapter 4

OPERATION

Starting

Once the lamp is set up properly, verify that all personnel that will be in contact with the lamp system are aware of the potential hazards involved. It is the responsibility of the user to verify that the lamp is being used safely.

This example assumes the use of the EQ-99-RC Remote Control Module to provide local control. If using a custom control system, substitute the appropriate digital input and output lines from Table 3 for the switches and LEDs described below.

1. With the EQ-99-RC Remote Control Module connected properly, review the status LEDs on the Power Supply Controller. The POWER ON LED should be lit, and neither the CONTROLLER FAULT nor LAMP MODULE FAULT LEDs should be lit.

2. Turn on the ENABLE switch (place switch in up position) and wait 2 seconds.

3. Turn on the OPERATE Switch (place switch in UP position).

4. Within several seconds the LASER ON LED will light. Laser light is now present in the Lamp House.

5. In approximately 20-90 seconds the igniter will be turned on automatically and the plasma will ignite. The LAMP ON LED will be lit. The duration of the warm up time (20-90 seconds) will depend on the temperature and previous operating condition of the EQ-99. The EQ99 will automatically detect when the unit has reached the optimum conditions for ignition.

If the LAMP ON LED is not lit within 90 seconds maximum after step 4, the lamp failed to ignite (this is very unusual). However, if this occurs, turn both the ENABLE and OPERATE switches to the OFF position (down) and begin at Step 1 again.

Stopping

To turn the LAMP off, simply turn the OPERATE Switch to the OFF position. When finished using the lamp, turn the ENABLE switch to the OFF position and remove the 24VDC supply voltage.

To minimize wear on the ignition components, it is best to avoid frequently starting and stopping the lamp. It is recommended to run the lamp continuously if long off-periods are not required.
MAINTENANCE

Fiber Cleaning Process

Fiber Cleaning Basics:

- The LDLS laser fiber connector is carefully inspected and is clean prior to shipment. Energetiq strongly recommends leaving the laser fiber connected, unless necessary for installation or routing of the laser fiber.
- Leave Laser Fiber SMA connected whenever possible.
- If the SMA fiber must be disconnected, always use a cap on both ends.
- Store caps open side down when possible.
- Blow out caps with CDA (Clean Dry Air) prior to use.
- Never leave the fiber disconnected without a cap.
- Follow the fiber inspection and cleaning process (Figure 8) before making a laser fiber SMA connection.
- Operating the LDLS with a contaminated fiber introduces the risk of decreased performance or damage to the unit.

Fiber Inspection and Cleaning Process

CAUTION

Disconnect power from the EQ-99 Power Supply Controller unit before performing fiber inspection.
Fiber Inspection Tools

Figure 8: Fiber Cleaning Process Flowchart

Figure 9: Thorlabs FS-200 Handheld Fiber Inspection Scope
Figure 10: Westover FVD-2400 Benchtop USB/PC Operated Fiber Viewer

Examples of Fiber Images

Figure 11: Fiber End Images
Fiber Cleaning Tools

1. Clean Dry Air
2. Dust Off (or similar clean, compressed air)
3. Cletop (www.cletop.com)
4. Lint Free Wipe with Isopropyl Alcohol

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cletop Type A SMA cleaner with Blue tape</td>
<td>14100500</td>
</tr>
<tr>
<td>Box of 6 Replacement Blue Tape Reels</td>
<td>14100700</td>
</tr>
</tbody>
</table>

Troubleshooting

See below if any problems are encountered in operating the EQ-99-FC.

Condition:
Controller Fault and/or Lamp House Fault LED(s) are ON.

Action:
- Always begin operation of the source by verifying the interlocks.
- Confirm that the external interlock contact is closed (or that the black jumper plug is fully inserted into the back of the EQ-99-RC Remote Control Box)
- Check that the bulb and laser fiber are properly connected at the Lamp House unit.
- To reset or clear Fault condition, turn both the “Enable” and “Operate” switches to the OFF position. Wait 1 second, then turn the “Enable” switch to the on position.
- If all of the interlocks are OK and either the lamp or controller interlock faults will not clear, please contact the factory.

Condition:
Lamp fails to ignite after several tries.

Action:
Contact Energetiq.
Lamp Replacement

Contact Energetiq if a bad lamp is suspected.