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Abstract

In this paper, we propose a complete model of Shack–Hartmann wave-front sensor, seen as a grating interferometer.

A new technique for extracting the phase derivative is also proposed and the exact quantity measured is detailed.
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1. Introduction

The Shack–Hartmann wave-front sensor (SHWFS) is a very common device, especially in the field of

adaptive optics [1], but is nonetheless poorly known in the field of interferometry. Indeed, to our knowl-

edge, no paper has been completely devoted to its theory [2]. This is probably due to two facts. First, the

birth of this system is only related in an abstract of one of Shack�s conferences [3]. Second, its operation
appeals to the intuition, which gives the overall impression that the underlying theory is obvious. However,

when considering the way the complex grid of microlenses constituting the main component of the SHWFS

acts upon the analyzed wave-front, the mode of operation is not so easy to describe.

The purpose of this paper is to present a theoretical model of SHWFS, seen as a grating interferometer,

as presented in Section 2. Section 3 models the irradiance pattern obtained in the common focal plane of

microlenses (called Hartmanngram hereafter). Two domains, are distinguished, considering the strength of

the crosstalk between lenslets. Then, Section 4 describes the extraction of phase derivatives. To conclude,

the quantity actually measured by SHWFS is summarized.
* Tel.: +33-169936386; fax: +33-169936345.

E-mail address: jerome.primot@onera.fr.

0030-4018/03/$ - see front matter � 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0030-4018(03)01565-7

mail to: jerome.primot@onera.fr


82 J. Primot / Optics Communications 222 (2003) 81–92
2. SHWFS description

The original description of SHWFS by Shack and Platt is based on the following model [4]. The analyzed

wave-front is sampled by a microlens array, leading to almost plane sub-wave-fronts, as shown in Fig. 1.

The focal spot at the focus of each lenslet is then translated laterally, proportional to the slope of the
associated sub-wave-front. In this model, the assumption is that each lenslet is independent of consecutive

lenslets. So, it is limited to microlens arrays with low F-number.

Here, we propose to consider that the microlens array is a phase grating, following the remark made by

Roddier [5]. So, SHWFS can be seen as a grating interferometer.

The expression of the phase grating is equal to Gðx; yÞ
Gðx; yÞ ¼ exp ip
x2 þ y2ð Þ
kfll

� �
Pp;pðx; yÞ

� �
� combp;pðx; yÞ ð1Þ
with
Pp;pðx; yÞ ¼ 1; for� p=2 < x < p=2; �p=2 < y < p=2
Pp;pðx; yÞ ¼ 0; elsewhere

�

and p is the microlens pitch, fll is the focal length of lenslets, k is the wavelength, combp;pðx; yÞ is the bi-

directional Dirac comb function of p pitch and * is the convolution product.

As Gðx; yÞ is a bi-periodic function, it can be expressed as
Gðx; yÞ ¼ 1

p2
Xþ1

n¼�1

Xþ1

m¼�1
cn;m exp

2ip
p

ðnx
�

þ myÞ
�

ð2Þ
with
cn;m ¼
Z 1

�1

Z 1

�1
Pp;pðx; yÞ exp ip

x2 þ y2ð Þ
kfll

� �
exp

�
� 2ip

p
ðnxþ myÞ

�
dxdy ð3Þ
or
cn;m ¼ FT Pp;pðx; yÞ exp ip
x2 þ y2ð Þ
kfll

� �� �
n=p;m=p

ð4Þ
with FT, the Fourier transform of the function under brackets at the point (n=p;m=p).
Fig. 1. Classical description of Shack–Hartmann wave-front sensor.



Fig. 2. Microlens array seen as a two-dimensional phase grating, with diffracted orders.
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So, Eq. (4) can be re-expressed as
cn;m ¼ Wll
n
p
;
m
p

� �
ð5Þ
with
Wllðu; vÞ ¼
sinðppuÞ

ppu
sinðppvÞ

ppv

� �
� exp ipkfll u2

��
þ v2

		
: ð6Þ
If the square grating Gðx; yÞ is illuminated by a monochromatic almost plane wave, parallel to its plane,

replicas of the wave are diffracted. All of them have an angular deviation, as described in Fig. 2.

Assuming that the pitch p is large with respect to the wavelength, and that analyzed wave-front is small

with respect to the amplitude of the phase grating, the irradiance pattern can be seen as the interference of
wave-front replicas, each of them being tilted with a wave-vector equal to kn;m
kn;m ¼ 2p
k

na;ma;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðn2 þ m2Þa2

p� 
ð7Þ
with a being equal to
a ¼ k
p
: ð8Þ
Considering Eq. (6), it is not easy to compute cn;m values. However, it has to be noticed that this expression is

analogous to the expression of the amplitude at the (nk;mk) point of the focal plane of a F/1 square

lens of size p, for the observation of a point source P placed at a fll distance. This analogy is illustrated inFig. 3.

Considering the relative rates of variation of the functions convolved in Eq. (5), we find two domains.

The first one is called ‘‘independence domain’’; it corresponds to lenslets having a low F-number. In this

case, no crosstalk has to be considered between consecutive lenslets. So, the second domain is called
‘‘crosstalk domain’’.

2.1. Independence domain

Taking into account the analogy presented in Fig. 3, we see that Eq. (5) can be simplified when fll is not

too high with respect to p (lenslets of low F-number). Indeed, the point source P is strongly defocused, and

geometrical approximation applies, so Eq. (5) reduces to



Fig. 3. Illustration of the analogy. Cn;m are equal to the values of the amplitude obtained at (nk;mk) point of the focal plane for a F/1

square lens of focal length p, considering a defocalized point P placed at fll.
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cn;m ¼ exp ip kfll
p2

� 
; cn;mj j ¼ 1ð Þ; for� H < n < H ; �H < m < H

cn;m ¼ 0; elsewhere

(
ð9Þ
with � �

H ¼ int

p2

2kfll
; ð10Þ
where int is the integer part of the expression under brackets.
Consider now the amplitude Aðx; y; LÞ observed in a plane distant of L, when the grating is illuminated by

a plane wave-front
Aðx; y; LÞ ¼ Gðx; yÞ � F ðx; y; LÞ; ð11Þ

where F ðx; y; LÞ is the Fresnel operator
F ðx; y; LÞ ¼ exp

�
� ip

kL
x2
�

þ y2
	�

: ð12Þ
Considering Eqs. (11) and (5), the Fourier transform of A, FTAðu; v; LÞ, is then equal to
FTAðu; v; LÞ ¼
XH
n¼�H

XH
m¼�H

cn;m exp

�
� ipkL

p2
n2
�

þ m2
	�

d u
�

� n
p
; v� m

p

�
ð13Þ
with dðu; vÞ, the Dirac function.
In the focal plane of microlenses, L is equal to fll, and Eq. (13) reduces to
FTAðu; v; fllÞ ¼
XH
n¼�H

XH
m¼�H

d u
�

� n
p
; v� m

p

�
; ð14Þ
and
Aðx; y; fllÞ ¼
XH
n¼�H

XH
m¼�H

exp
2ip
p

ðnx
�

þ myÞ
�
: ð15Þ
Thus, for microlens arrays with low F-number, the recorded Hartmanngram can be described as the

interference of (2H þ 1) by (2H þ 1) tilted replicas of equal amplitude of the analyzed wave-front.

Notice that H corresponds to the integer part of j, ratio between the pitch p and the width of the spot

2kfll=p observed at the focal plane of an independent lenslet; so, j can be defined as a compression ratio.

In this case, the extremities of the wave vectors of the replicas define a square, corresponding to the

contributing part of the analyzed wave-front. The size of this square is equal to CG
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CG ¼ ð2H þ 1Þafll: ð16Þ

Taking into account Eqs. (8) and (10), and considering that H is large, C reduces to
CG ffi p: ð17Þ

So, for an array of low F-number microlenses, the assumption of independent lenslets is globally verified,

as the contributions of the analyzed wave-front are all coming from a surface corresponding to the support

of a lenslet. The classical model proposed by Platt and Shack [4] is then verified.

2.2. Limits of the independence domain

The model described here-before is very simple and of great interest for understanding how the SHWFS

operates. Unfortunately, the independence assumption is not relevant in most applications found in the

literature.
For example, Fig. 4 shows the modulus of the cn;0 for H equal to 4, i.e., a focal spot a quarter of a sub-

aperture wide. It can be seen that the number of orders of non-negligible amplitudes is greater than H by a

factor of 2, if we take 10% of the largest amplitude as a limit. In fact, the independence assumption applies

only when H exceeds 20. However, for most applications, H is comprised in between 2 and 6, with a

privileged value of 4. That is, the constraints of high bandpass and low light level for controlling an

adaptive optics requires the use of a sensor with a low number of pixels, and thus a low compression ratio.

Therefore, in these cases, the number of diffracted orders HNG exceeds H , and the amplitude ANGðx; y; fllÞ
is expressed as
ANGðx; y; fllÞ ¼
XHNG

n¼�HNG

XHNG

m¼�HNG

cn;m exp
�ipkfll

p2
n2
��

þ m2
	�

exp
2ip
p

ðnx
�

þ myÞ
�
: ð18Þ
Fig. 4. Amplitudes of cn;0, for a compression ratio of 4.

1

tion of HNG and CNG for different values of H

HNG CNG 
 p

4 2.5

7 2

10 1.8

15 1.6

27 1.4

62 1.2

, expressed in multiple of p, corresponds to the size of the surface of the analyzed wave-front from which significant contri-

s are issued.
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Thus, for microlens array with high F-number, the Hartmanngram can be described as the interference

of 2HNG þ 1 by 2HNG þ 1 replicas of unequal amplitudes of the analyzed wave-front. Now, CNG, the size of

the square defined by the extremities of the wave vectors, is strictly greater than p.
Table 1 gives CNG for different values of H , if HNG is limited to the orders having an amplitude higher

than 10% of the highest order. It can be seen that the assumption of independent lenslets is no longer valid

because significant contributions come from an area much larger than a sub-aperture.
3. The Hartmanngram

As described above, assuming that the analyzed wave-front variations are small with respect to the

microlens grid, SHWFS can be seen as a lateral shearing interferometer, based on the interference of

replicas of various amplitudes, each tilted in x- and y-directions. So, in the general case, for a wave-front

uniform in intensity, the amplitude in the focal plane is equal to AANAðx; yÞ
AANAðx; yÞ ¼
XHt

n¼�Ht

XHt

m¼�Ht

cn;m exp
�ip
2H

n2
��

þ m2
	�

exp iU x
��

þ np
2H

; y þ mp
2H




 Support x
�

þ np
2H

; y þ mp
2H


exp

2ip
p

ðnx
�

þ myÞ
�

ð19Þ
with Ht equal to H or HNG, and Supportðx; yÞ, the support of the analyzed pupil.
For the sake of simplicity, we will consider here that the support is large, i.e., the SHWFS has a large

number of sub-apertures. In this case, AANA can be approximated by
AANAðx; yÞ ¼
XHNG

n¼�HNG

XHNG

m¼�HNG

cn;m exp
�ip
2H

n2
��

þm2
	�

exp iU x
��

þ np
2H

; y þ mp
2H


exp

2ip
p

ðnx
�

þmyÞ
�
:

ð20Þ

We can now evaluate the intensity in the common focal plane, for the two domains.

3.1. Independence domain

We will first consider this case because, while shown to be irrelevant, it corresponds to the classical

description of the SHWFS. The irradiance pattern IGðx; yÞ is equal to:
IGðx; yÞ ¼
XH

n;m¼�H

XH
n0 ;m0¼�H

exp i U x
���

þ np
2H

; y þ mp
2H


� U x

�
þ n0p
2H

; y þ m0p
2H

���


 exp
2ip
p

n
���

� n0
	
xþ m

�
� m0	y	�: ð21Þ
Assuming that the analyzed wave-front is well sampled, i.e., that its variations are small at the scale of a

sub-aperture, we can consider that
U x
�

þ np
2H

; y þ mp
2H


¼ Uðx; yÞ þ np

2H
oU
ox

ðx; yÞ þ mp
2H

oU
oy

ðx; yÞ: ð22Þ
So, from Eqs. (21) and (22), with k ¼ n� n0 and l ¼ m� m0
IGðx; yÞ ¼
X2H

k¼�2H

X2H
l¼�2H

Harmk;lðx; yÞ exp
2ip
p

ðkx
�

þ lyÞ
�

ð23Þ
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with
Harmk;lðx; yÞ ¼ 2Hð þ 1� kj jÞ 2Hð þ 1� lj jÞ exp i
p
2H

k
oU
ox

ðx; yÞ
��

þ l
oU
oy

ðx; yÞ
��

: ð24Þ
So, FTIGðu; vÞ, Fourier transform of the irradiance pattern, is equal to
FTIGðu; vÞ ¼
X2H

k¼�2H

X2H
l¼�2H

FTHarmk;lðu; vÞ � d u
�

� k
p
; v� l

p

�
ð25Þ
with FTHarmk;lðu; vÞ, the Fourier transform of Harmk;lðx; yÞ. The spectrum of IG consists of ð4H þ 1Þ2
harmonics FTHarmk;lðu; vÞ placed on a square grid of pitch 1=p with decreasing amplitudes.

However, the assumption made here is very restrictive, especially for the first harmonics. Consider, for

example, Harm1;0ðx; yÞ
Harm1;0ðx; yÞ ¼
XH�1

n¼�H

XH
m¼�H

exp i U x
���

þ np
2H

; y þ mp
2H


� U x

�
þ ðnþ 1Þp

2H
; y þ mp

2H

���
: ð26Þ
Assuming that the variation of U is small on the scale of p=H (and not on the scale of p), Harm1;0 can be

approximated by
Harm1;0ðx; yÞ ¼
XH�1

n¼�H

XH
m¼�H

1þ i U x
��

þ np
2H

; y þ mp
2H


� U x

�
þ ðnþ 1Þp

2H
; y þ mp

2H

��
; ð27Þ
so
Harm1;0ðx; yÞ ¼ 2Hð2H þ 1Þ þ i
XH
m¼�H

U x
�

� p
2
; y þ mp

2H


� U x

�
þ p
2
; y þ mp

2H


: ð28Þ
As H is large, we find that the imaginary part of Harm1;0ðx; yÞ is proportional to the difference of the

mean phase on the two opposite sides of a sub-aperture
Im Harm1;0ðx; yÞð Þ /
Z p=2

�p=2
U x
�

� p
2
; y

� U x

�
þ p
2
; y

dy: ð29Þ
The same result is obtained for Harmk;lðx; yÞ, assuming that the phase variations are small on the scale of

gk;l
gk;l ¼
kp
H

;
lp
H

� �
: ð30Þ
It should be noted that the imaginary part of the first harmonic is equal to the quantity deduced from the

geometrical model, taking into account the centroiding step [6].
3.2. Crosstalk domain

INGðx; yÞ, the irradiance pattern observed in the focal plane of microlenses in the general case, is ex-

pressed as
INGðx; yÞ ¼
XHNG

n;m¼�HNG

XHNG

n0;m0¼�HNG

cn;mc�n0 ;m0 exp i U x
���

þ np
2H

; y þ mp
2H


� U x

�
þ n0p
2H

; y þ m0p
2H

���


 exp
2ip
p

n
���

� n0
	
xþ m

�
� m0	y	� ð31Þ
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with
Fig. 5

to the
cn;m ¼ Wll
n
p
;
m
p

� �
exp

�ip
2H

n2
��

þ m2
	�

; ð32Þ
and c�n;m, the conjugated complex of cn;m:.
Consider first that the analyzed wave-front varies slowly on the scale of pNG
pNG ¼ HNG

H
p: ð33Þ
The result is then similar to that of Section 3.1
INGðx; yÞ ¼
XHNG

k¼�HNG

XHNG

l¼�HNG

HarmNG
k;l ðx; yÞ exp

2ip
p

ðkx
�

þ lyÞ
�

ð34Þ
with
HarmNG
k;l ðx; yÞ ¼ Cll

k
p
;
l
p

� �
exp i

p
2H

k
oU
ox

ðx; yÞ
��

þ l
oU
oy

ðx; yÞ
��

; ð35Þ
and
Cllðu; vÞ ¼ Wllðu; vÞ exp
�ip
2H

ðu2
��

þ v2Þ
��

 Wllðu; vÞ exp
�ip
2H

u2
���

þ v2
	��

; ð36Þ
where  denotes the auto-correlation.
However, the approximation made is now very restricting. For example, for H equal to 4, phase vari-

ations are assumed to be small on the scale of twice the sub-aperture size.

If we consider now the only first harmonics, with the same assumption as in Section 3.1 that the phase

variations are small on the scale of p=H , we find
Im HarmNG
1;0 ðx; yÞ

� 
¼

XHNG�1

n¼�HNG

XHNG

m¼�HNG

p
2H

Re cn;m c�nþ1;m

�  oU
ox

x
�

þ np
2H

; y þ mp
2H


: ð37Þ
Compared to the previous case of independence assumption, we now have a weighted sum of consecutive

local phase derivatives. As HNG is now relatively small, the integral form proposed in Eq. (29) is no more

possible. Notice also that, as HNG is strictly greater than H (a factor 2 for H equal to 4), this weighted sum

involves phase derivatives coming from a much larger surface than the surface of a sub-aperture. However,
due to the decrease in amplitude of diffracted orders, weights are significant only for the first orders. Fig. 5
. Weighting function of the phase derivative for the first harmonic Harm1;0ðx; yÞ, for j equal to 4. The dotted curve corresponds

approximation of independent lenslets.
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shows a cut of the weighting function in the x-direction, compared to the geometrical approximation, for H
equal to 4.

3.3. Recorded Hartmanngram

We have not considered the detection of the Hartmanngram so far. However, it is a fundamental step, as
the pixel size is relatively large with respect to the pitch of the microlens grid. To evaluate its impact, just

consider the simple case of the analysis of a null phase with an ordinary SHWFS (H small). Assuming a

focal plane array with a fill factor of 1, the measured irradiance pattern ImNGðx; yÞ is equal to
Fig. 6

pixels
ImNG ¼ INGðx; yÞ � Ppix;pixðx; yÞ
� 	

combpix;pixðx; yÞ ð38Þ

with pix being the pixel size. So, FTImNG, the Fourier transform of the measured Hartmanngram is
FTImNGðu; vÞ ¼ Cllðu; vÞ
sinðppuÞ

ppu
sinðppvÞ

ppv
comb1=p;1=p

� �
� comb1=pix;1=pix: ð39Þ
The natural decrease in the amplitudes of the harmonics is thus amplified, due to the filtering of the pixel.
If we now consider the impact of the sampling step, we know that the farthest harmonic in the

u-direction is placed at a spatial frequency fmax
fmax ¼
2HNG

p
>

2H
p

: ð40Þ
So, we have to compare this frequency with the Nyquist frequency fNyq ¼ 1
2pix

. Users ordinarily choose to

place one spot on two pixels, so that
pix ¼ kfll

p
: ð41Þ
Assuming this, we find that
fmax

fNyq

> 2: ð42Þ
. Irradiance pattern recorded in the common focal plane of lenslets. SHWFS is made of 18 by 18 sub-apertures, with 12 by 12

by sub-aperture. The microlens grid is rotated slightly to show the aliasing effects.



Fig. 7. Logarithm of the Hartmanngram spectrum. Notice the decrease of harmonics and the aliased harmonics, placed outside the

square grid, at the edges of the figure. The progressive elongation of harmonics is due to aberrations.
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So, the irradiance pattern is largely under-sampled, and highest harmonics are aliased onto lowest

harmonics. However, due to their decrease, this effect is limited, especially for the first harmonics.

To illustrate this sampling problem, consider a SHWFS consisting of 18 sub-apertures across the di-

ameter of the analyzed pupil. Each sub-aperture comprises 12 by 12 pixels, and the ideal focal spot (ne-

glecting consecutive lenslets) is placed on 2 by 2 pixels, so H is equal to 6.

Fig. 6 shows the observed experimental Hartmanngram and Fig. 7, the logarithm of the modulus of its

spectrum. The harmonics placed on a 1=p grid are clearly visible, with their decreasing amplitudes. The
elongation of the more remote harmonics is due to aberrations, as the tested microlens array is of relatively

poor quality. The microlens grid has been rotated slightly to show the aliasing. Thus, aliased harmonics

appear as elongated spots, outside the square grid, at the edges of the figure.
4. Phase derivatives extraction

Another fundamental step for SHWFS is in the extraction of the phase derivatives. As described in the
previous sections, one good way of obtaining this information for the two main directions x and y is to

consider Harm1;0ðx; yÞ and Harm0;1ðx; yÞ. However, most users prefer to estimate the phase derivatives by

centroiding the local spots. The purpose of this paragraph is to demonstrate that these two processes are

nearly the same.

Consider the centroiding operation in the x-direction, Cenxðx; yÞ

Cenxðx; yÞ ¼ ½Iðx; yÞSlopeðxÞ� � Pp;pðx; yÞ ð43Þ
with I , the irradiance pattern, being equal to IG or ING, and SlopeðxÞ being the function presented in Fig. 8.

The Fourier transform of SlopeðxÞ, FTSlopeðuÞ, is shown in Fig. 9. It is made of Dirac functions, with 1=x
decreasing amplitudes. So, the Fourier transform of Cenxðx; yÞ, FTCenxðu; vÞ, is



Fig. 9. TFSlopeðuÞ, Fourier transform of SlopeðxÞ, for six sub-apertures. Dotted curve corresponds to 1=x function.

Fig. 8. SlopeðxÞ, weighting function for centroiding evaluation (six sub-apertures).
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FTCenxðu; vÞ ¼
 XHNG

k;l¼�2HNG

"
FTHarmNG

k;l �
Xþ1

j¼�1
j 6¼0

1

j
d u
�

� k þ j
p

; v� l
p

�#!
sinðppuÞ

ppu
sinðppvÞ

ppv
; ð44Þ
as sinðppuÞ=ppu is equal to zero for u ¼ n=p, we obtain
FTCenxðu; vÞ ¼
Xþ1

j¼�1

1

j
FTHarmNG

j;0 ðx; yÞ; ð45Þ
so
Cenxðx; yÞ /
Xþ1

j¼1

1

j
Im HarmNG

j;0 ðx; yÞ
� 

: ð46Þ
We have a weighted sum with decreasing weights of harmonics with decreasing amplitudes. So, for small

H , we can say that the centroiding operation and the extraction of the imaginary part of HarmNG
1;0 ðx; yÞ are

two nearly equivalent operations.
Fig. 10. Recommended sinusoidal function, for phase derivative extraction.
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Moreover, it seems that the second technique is probably more precise because it is based on the har-

monic which is almost unaffected by aliasing problems. In practice, the extraction of the imaginary part of

the first harmonic is similar to the classical centroiding technique, just replacing the SlopeðxÞ function by an

appropriated sinusoid (see Fig. 10).
5. Conclusion

In this paper, we have demonstrated that the classical model used to describe the properties of SHWFS is

not relevant for most applications. Indeed, the assumption of independent lenslets is not valid for most part

of the applications, as it implies a compression ratio (ratio between the pitch and the size of the focal spot)

greater than 20. For more appropriated compression ratio (from 2 to 8), the quantity measured by cen-

troiding algorithm is proportional to the local phase derivative multiplied by a weighting function, de-

pending on the compression ratio. The overall form of this weighting function shows that the high orders
diffracted by the microlens array have no significant contribution. On the other hand, it differs significantly

from the weighting function predicted by the classical model.

Considering the spectral analysis of the Hartmanngram, we have shown that the classical centroiding

algorithm can be upgraded by replacing the periodical slope function by a simple sinusoid. This reduces the

aliasing effects, existing in most applications, as only the first harmonic is taken into account.

To conclude, the model proposed here allows a better understanding of the SHWFS. It demonstrates

that the way this measurement device acts on the analyzed wave-front is not so simple. Moreover, with this

description, the SHWFS can be included in the large family of grating interferometers. It gives a simple
theoretical basis to compare with other wave-front sensors such as lateral shearing interferometers [7–9].

We hope that the formulas detailed in the text will help in applications such as deconvolution from wave-

front sensing or adaptive optics control, allowing a better description of the measured quantity.
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