会员登录



购物车
浏览过的商品

自适应光学系统AO System


自适应光学是补偿由大气湍流或其他因素造成的成像过程中波前畸变的最有前景的技术

自适应光学的使用
最显然的应用是直接利用滤镜成像。所有的自适应光学系统都提供这一基础模式,但经常配备附加的扫描滤镜(圆形可变滤波器),这样做是为了取得丰富的数据(二维的平面空间和一维的光谱)。考虑到大气湍流是随着时间不断改变的,在短时间内获得丰富的观测资料及数据听起来就显得异常诱人。这可以利用全视场摄谱仪(IFS)做到。加拿大-法国-夏威夷望远镜 (CFHT)的CMOS系统在可见波段的观测和西班牙卡拉阿托天文台的3D在红外波段的观测是这一方面的先驱。类似的设备同样安装于8米望远镜,尤其是安装于双子星望远镜(Gemini)的GMOS系统在可见波段的应用以及安装于甚大望远镜(VLT)的SINFONI -SPIFFI系统在红外波段的应用。

自适应光学系统有很大的技术挑战。其中包括快速低噪声的传感器(为了能使用比较昏暗的引导星来进行矫正);高能、可信且易于操作的钠激光器;超高速处理器,要求每秒的运作此时达109到1010次;可变形镜面,带宽几千赫兹和上千个触动器;大型的二级自适应透镜。后者在热波段尤其有趣,任何一小块附加的镜面都加大由设备造成的原本已经很大的热背景。

基于自然引导星的自适应光学系统正帮助现代的8到10米望远镜不断取得接近衍射极限的成像质量以及分光数据。可见光波段的改正已相当理想,但是至今仍然无法到达衍射极限。人造引导星自适应光学系统被应用于不少天文台,而且这个数字正不断的增加。但是人造引导星在极高天空覆盖率下的稳定应用仍然没有实现。MCAO技术仍在襁褓阶段。

许多最近的天文观测成果都基于新的光学观测技术。尤其是当甚大望远镜(VLT)投入使用后(干涉观测法带来了更清晰的像质),自适应光学系统显得更加重要。强大的集光能力和极小的分辨率(空间上的和光谱上的)将为未来地面天文观测带来最主要的进步。更深入地,计划和讨论中的巨型光学望远镜(比如OWL)将依赖先进的自适应光学技术来实现全部的天文观测---在这些项目的建设初期望远镜就和自适应光学系统融为一体。

自适应光学系统AO System

AO 系统概要

瞬渺光电提供荷兰OKO公司全套闭环自适应光学系统,用于实时修正光学系统的像差,产生精准的波面,应用领域包括科学仪器、天文光学、眼科光学、激光光学、光学对心系统等

OKO公司提供的闭环自适应光学系统主要有2种

  • 基于OKO公司薄膜变形镜(MMDM,最高可达79控制通道)的自适应光学系统
  • 基于OKO公司压电变形镜(PDM,有19,37,79,109通知通道)的自适应光学系统

Aberration correction is possible in circular, rectangular, annular, elliptic and annular elliptic apertures. The feedback frame rates of 30 ... 1500 fps, depending on the camera and computer used, are sufficient for correction of aberrations caused by the atmospheric turbulence.

Real-time AO phase control is realized by our FrontSurfer Hartmann-Shack WF sensor,offering a wide variety of control options including SVD eigenmode analysis, mode filtering, operations with the background, etc .

We can also supply deformable mirror systems with linear 19 and 38-ch MMDM and 20-ch PDM for ultrafast pulse shaping. These application-specific systems should be controlled by a customer-made feedback sensors and software.

AO systems with PDM

AO systems with PDM are based on our technology of piezoelectric deformable mirrors (PDM). These mirrors can compensate large optical aberrations in a frequency range up to 1 kHz. Currently we fabricate PDM with 19, 37, 79 and 109 channels with apertures of 30mm and 50mm. Since these mirrors can produce large local responses, they are efficient for the correction of aberrations of the human eye, laser systems and other demanding applications.

Complete systems are always tailored to the needs of the customer. A basic system would include a deformable mirror, one or more HV amplifier units, USB or PCI DAC controllers, CMOS firewire camera with a microlens raster and a control computer running FrontSurfer WF reconstruction and contrrol software.

AO systems with MMDM

AO systems with MMDM are based on our technology of Micromacined Membrane Deformable Mirrors. These mirrors are inexpensive and fast. They feature zero hysteresis and can work in a frequency range of up to 1kHz. Currently we fabricate 15mm MMDM with 19 and 37 channels, 30mm MMDM with 59channels and 40mm MMDM with 79 channels. Parameters of these mirrors are naturally matched to the parameters of atmospheric turbulence, therefore they produce best results when used for correction of turbulence.

Complete systems are always tailored to the needs of the customer. A basic system would include a deformable mirror, one or more HV amplifier units, USB or PCI DAC controllers, CMOS firewire camera with a microlens raster and a control computer running FrontSurfer WF reconstruction and contrrol software.

排序方式-

共有0条 0/0页 转到