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Abstract: Interparticle interaction energies and other useful physical char-
acteristics can be extracted from the statistical properties of the motion of
particles confined by an optical line trap. In practice, however, the potential
energy landscape, U(x), imposed by the line provides an extra, and in gen-
eral unknown, influence on particle dynamics. We describe a new class of
line traps in which both the optical gradient and scattering forces acting on
a trapped particle are designed to be linear functions of the line coordinate
and in which their magnitude can be counterbalanced to yield a flat U(x).
These traps are formed using approximate solutions to general relations
concerning non-conservative optical forces that have been the subject of
recent investigations [Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill,
and D. G. Grier, Phys. Rev. Lett. 100, 013602-4 (2008).]. We implement
the lines using holographic optical trapping and measure the forces acting
on silica microspheres, demonstrating the tunability of the confining
potential energy landscape. Furthermore, we show that our approach effi-
ciently directs available laser power to the trap, in contrast to other methods.
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1. Introduction

The past few decades have seen remarkable advances in our understanding of interactions be-
tween light and matter, one consequence of which has been the development of optical trapping
techniques for micromanipulation. It is well known that light focused to a diffraction-limited
point attracts dielectric particles; the use of point traps has revolutionized biophysics and the
study of soft condensed matter [1, 2, 3, 4, 5, 6]. Several researchers [7, 8, 9, 10] have realized
the appeal of line traps – 1D trapping potentials – for measuring inter-particle interaction en-
ergies and other crucial determinants of material response. In the simplest case, two particles
diffusing along a line will sample pair separations, r, whose probability distribution, p(r), obeys
a Boltzmann relation, U(r)/kBT = −ln(p(r)), where U is the interaction energy, kB is Boltz-
mann’s constant and T is the temperature. There exists, however, a serious obstacle to simply
translating passive observations of Brownian motion into measures of interparticle interactions.
In order for the dynamics to be determined solely by inter-particle interactions, as the above
relation assumes, the line trap’s confining potential must be uniform along the line dimension.
This condition of uniformity is, in general, not true. As we demonstrate and explain below,
even light focused to a uniform 1D intensity profile can create a potential landscape that directs
particles away from the line center. We have therefore invented a new class of optical line traps
that provide tunable intensity profiles along the line, I(x), while conserving the total integrated
optical intensity. These profiles are designed to generate forces acting on a trapped particle that
vary linearly with the distance from the line center, x, and whose slope is an experimentally
adjustable parameter. Implementing this approach and measuring U(x) for silica microspheres,
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we experimentally demonstrate the construction of one-dimensional trapping potentials (see
comment [11]) that are controllably concave up, concave down, or flat.

Our experimental design makes use of holographic optical tweezers (HOT), in which a liquid
crystal spatial light modulator (SLM) acts as a programmable diffractive element, modifying
the phase of an incident laser wavefront at each pixel [2, 12, 13, 14]. The SLM is located in a
plane, PC, conjugate to the back focal plane of a microscope objective lens. HOTs have recently
been exploited to create spatially extended traps by a method very different from ours [8], in
which the amplitude profile of the modified laser beam is cleverly mapped onto the SLM phase
profile. Using this technique, Roichman et al. have shown that the laser field can be manipu-
lated to control the force landscape experienced by trapped particles [16]; this control, however,
comes at the expense of a drastic reduction in diffraction efficiency. In our approach, the inten-
sity profile is reshaped without loss of trap power, allowing micromanipulation over tens of
μm length-scales with only tens of milliwatts of total laser power. Our design is constructed
from a simple geometric optics perspective that reveals an efficient, approximate solution to the
generalized force relations described in Ref. [16].

2. Line trap design and optical forces

Before discussing our design, we first note some elementary properties of optical elements
situated at PC (Fig. 1(a)). A mirror that tilts the incident beam away from the optical axis
generates a displaced point trap in the front focal plane, PF , by imparting to the laser beam a
phase profile φ(u,v) that is linear in u and v, coordinates spanning PC. The gradient of φ(u,v)
describes the tilt of the reflected beam and therefore the trap displacement, x, in PF . For a mirror
tilted about the v axis by angle θ , dφ

du = 2π
λ θ , where θ ≈ x/ f and f is the focal length of the

objective lens. An extended line of uniform intensity in PF can be created by a continuum of
mirrors in PC, with each increment du equally weighted so that dθ/du = constant, i.e. θ ∼ u.
Therefore, φ(u) ∼ u2. Specifiying the endpoints of the line in PF , e.g. x = ±L/2 for a line of
length L, and the extent of the phase profile in PC, u = ±umax, fully determines φ :

φ(u) = πLu2/(2λ f umax). (1)

The phase control at each pixel provided by the SLM enables, in practice, this conceptual
decomposition of a phase profile into a set of mirror elements.

Fig. 1. (a) Simplified schematic of the setup highlighting coordinate axes and focal planes.
Thick arrow: a beam deflected from the optical axis (z). Thin arrow: an undeflected beam.
For clarity, angles are greatly exaggerated and refraction at the lenses is only approximately
indicated. (b) Illustration of the mean radiation force (darker gray arrow) and its nonzero
x-component (lighter gray arrow) for a particle located at a position in the line trap (red
line) away from the optical axis.

The well known φ(u) described by Eq. (1) is that of a cylindrical mirror [8, 9]. It possesses an
inherent astigmatism which leads, in addition to the desired focal line, to a perpendicular line
displaced along the optical axis [8, 15]. This unintended line can be moved “above” or “below”
the desired line, i.e. upstream or downstream along the optical axis, by inverting the sign of
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φ and can therefore be situated outside the experimental sample volume, where it does not
interact with particles. In addition to the unintended line, there also exists a more pernicious
problem: while this φ(u) does successfully create a uniform line intensity it does not create
a uniform trapping potential for colloidal particles. Rather, as the data below demonstrate, a
trapped microparticle is subjected to an outward force that increases linearly with distance
from the line center and so is especially significant for lines more than a few μm in extent. This
force can be understood from a simple geometric perspective (expanded upon in Section 4) that
allows the design and implementation of new types of line traps, as detailed below.

From this point of view we can consider the forces associated with optical trapping as sep-
arable into two components: radiative forces, directed along the direction of light propagation
and proportional to the intensity, I, and gradient forces, proportional to �∇I. In a line trap, the ra-
diative force, Fr, at positions away from the optical axis has a nonzero component along the line
direction that grows linearly with x (Fig. 1(b)). The gradient force, Fg, has no component along
x for a line of uniform I(x). The sum Fr + Fg creates a concave-down potential which pushes
microparticles towards the endpoints of the line, as we experimentally demonstrate below.

To design a uniform trapping potential or, more generally, a potential with some desired,
tunable F(x), we need control of Fr and Fg. As noted above, Fr is proportional to x and to I:
Fr ∼ xI(x). Fg (along the line axis) is given by Fg ∼ dI/dx. Balancing the two requires:

xI(x)−A
dI
dx

= 0, (2)

where A is a constant determined by position-independent optical factors in Fg and Fr (particle
size, laser wavelength, index of refraction, etc.). Eq. (2) is satisfied by a Gaussian I(x):

I(x) = Cexp
(−x2/(2σ 2)

)
, (3)

where C is any constant, provided that σ 2 = A. If σ 2 > A, the outward radiative force outweighs
the inward gradient force; if σ 2 < A, the opposite is true .

To create the φ(u) that generates the above Gaussian I(x), we must “distort” the cylindrical
phase profile discussed earlier. Generalizing our mirror-element method, consider each angular
increment dθ as being generated by an element whose weight, du, varies with θ . Since the
deflected intensity I(θ )dθ ∼ du and θ ∼ φ ′ ∼ x, where φ ′ is the gradient of φ , I ∼ (du/dφ ′) ∼
(du/dx). Explicitly incorporating φ ′ = 2π

λ f x from earlier,

du
dφ ′ ∼ exp

(

−
(

λ f
2π

)2 (φ ′)2

2σ 2

)

. (4)

Integrating and setting φ ′
(u=0) = 0 (i.e. defining the central mirror segment as “flat”):

u ∼ (
π
√

2πσ/(λ f )
)

erf
(

λ f φ ′/(2π
√

2σ)
)

, where erf is the error function. Incorporating

all the prefactors into a constant, D, and defining erfinv as the inverse of the error function:

φ ′(u) =
(

2π
√

2σ/(λ f )
)

erfinv(u/D) . (5)

The endpoints of the line, set by the values of φ ′(u = ±umax), occur at x = ±L/2, from which

φ ′(u = ±umax) =
2π
λ f

(
±L

2

)
= ±πL

λ f
, (6)

allowing the determination of D as D = umax

[
erf

(
L/(2

√
2σ)

)]−1
. Thus:

φ ′(u) =

(
2
√

2π
λ f

σ

)

erfinv

(
u

umax
erf

(
L

2
√

2σ

))
. (7)
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Eq. (7) yields a simple cylindrical mirror as σ/L → ∞.

3. Experimental characterization of line shapes and trapping forces

Numerically integrating Eq. (7) provides a phase profile, φ(u), that generates a line trap with a
Gaussian intensity profile of width σ (Eq. (3)). Examples of φ(u) are plotted in Fig. 2(a). Ex-
perimentally implementing this, we measure and plot I(x) for a range of σ (Fig. 2). These and
other lines are formed using a 655 nm wavelength, 60 mW laser (Meshtel #RS655-70) shaped
by a HoloEye 1080P SLM and focused by a NA=1.2 60× water-immersion lens (Nikon) on a
Nikon TE2000-S microscope. For all lines shown, L = 60μm. Brightfield images are acquired
using a CCD camera (Optronics Microfire). Home-made software written in MATLAB calcu-
lates φ for the SLM and also controls image acquisition. The line is imaged by capturing its
reflection at a glass-water interface [17]. We find that the observed intensities are well fit by
Gaussian lineshapes (Fig. 2(b)).

The above analysis assumes a uniform intensity profile for the incident beam. A non-uniform
profile will lead the measured σ (denoted σm) to differ from the intended value (σ i). For a
Gaussian beam of width b (a few mm), one would expect the beam and line profiles to be
multiplied to yield a Gaussian product with σ −2

m = cb−2 + σ−2
i , where c is a magnification

factor. Plotting σ−2
m versus σ−2

i we confirm this linear relation of slope unity (Fig. 2(c)); the
measured slope is 0.99 ± 0.03. The total line intensity (I integrated over x) is found to be
nearly constant as a function of σm over the measured range 3 < σm < 17μm (Fig. 2(c), inset);
the phase modulation acts to redistribute light, conserving its overall intensity, in stark contrast
to other line-shaping approaches [8]. The line width in the transverse (y) direction is measured
to be 0.22±0.01μm for all lines examined, uncorrelated with the Gaussian width in x.

To characterize the optical trapping potentials experienced by colloidal particles, we exam-
ined single trapped microspheres of radius a = 1.6μm silica (Bangs Laboratories) in deionized
water (18.2 MΩ-cm, Millipore). These particles are sufficiently dense to gravitationally settle
near the chamber bottom, limiting appreciable Brownian motion to the xy plane and allowing
characterization of the x−component of the trapping force without complications from motion
in z [11]. Tracking was performed using home-made software implementing well-established
algorithms [18] that localize particle centers with ≈ 20 nm precision. Before presenting quanti-
tative discussions of the trapping landscape, we plot typical trajectories of trapped microparti-
cles that illustrate concave-down, concave-up, and roughly flat potentials. A particle initially at
the line center (x = 0) experiencing a nearly flat intensity profile (σ i = ∞, σm = 17.2μm) shows
a steady drift away from the line center toward either of the ends (Fig. 3(a), black), not free dif-
fusion. For much smaller σm, e.g. 3.8μm (Fig. 3(a), dark gray), particle motion is constrained
to the vicinity of x = 0. The plotted trajectory shows a standard deviation of the position in x
of 0.5 μm – considerably smaller than σm. For intermediate σm, e.g. 8.4μm, the particle me-
anders with a span of several μm (Fig. 3(a), light gray), suggesting a balance between Fg and
Fr. Measurements of trajectories are in themselves insufficient to prove such a balance or to
adequately characterize the trapping landscape unless impractically long measurement times
are employed. We therefore turn to a more insightful method.

Particle tracking microscopy of Brownian motion can quantify the forces acting on colloidal
particles with fN-scale sensitivity (described in detail by Sainis et al. [19]). Given an initial
position xi, the statistical ensemble of displacements, Δxi, over a time increment Δt is described
by a diffusive relation s2

xi
= 2DiΔt and a drift relation < Δxi >= viΔt, where Di is the diffusion

coefficient, vi is the drift velocity, and s2
xi

and < Δxi > are the variance and mean, respectively,
of the measured Δxi. The force Fi = bvi, where b is the viscous drag, can be evaluated via
the Stokes-Einstein relation Di = kBT/b to yield Fi = 2kBT < Δxi > /s2

xi
, relating the force at

position xi to the statistics of the displacements without requiring a priori knowledge of D.
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Fig. 2. (a) Phase profiles φ(u) for various values of σ with parameters L = 60μm, f = 2.57
mm, λ = 0.655μm, and umax = 3.6 mm. (b) Measured intensity profiles, I(x), of Gaussian
line traps, together with Gaussian fits. Inset: Images of two of the lines. (c) Measured (σm)
and intended (σi) widths. A linear fit of σ−2

m vs. σ−2
i has slope 0.99 ± 0.3. Inset: Integrated

line intensity as a function of σ .

We implemented this method by repeatedly directing a trapped particle to various locations
along x, releasing the particle in the line trap, and monitoring the displacements, Δx, over time
intervals set by the camera frame rate (Δt = 0.1 s) [20]. The data reveal a linear relation between
F and x, consistent with the earlier discussion (Fig. 3(b), inset). Superimposed on the linear
form, F(x) for this and other σ values shows “wiggles” most likely due to the roughness in the
intensity profile (Fig. 2(b)), stemming from the pixellation and necessarily imperfect diffraction
efficiency inherent in any SLM. We fit F(x) to a linear form and extract the slope, B [21].

The key characterization of the trap potential is the dependence of B on σ . From the above
analysis of forces we can interpret σ as a relative weighting of the “inward” Fg and the “out-
ward” Fr. A plot of the measured slope B vs. σ −1

m is shown in Fig. 3(b). For large σm, B > 0,
indicating a net outward force, while for small σm, B < 0, indicating an inward force. B crosses
zero at σm = 8.4±0.7μm – i.e. a Gaussian intensity profile with a width of 8.4 μm leads to a
flat trapping potential. (The uncertainty in this critical σm is estimated from a linear fit to the
5 < σm < 17μm data.)

4. Further discussion of optical forces

The simple geometric optics perspective considered in Section 2 is sufficient to describe the
data and also provides an intuitive picture of line trap design. This approach can be elaborated
upon in light of recent advances in the understanding of non-conservative optical forces relevant
for trapping [16]. Roichman et al. note that the radiative force can be separated into a compo-
nent along the optical axis Fz ∼ I and components transverse to the optical axis F⊥ ∼ I �∇φ .
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Fig. 3. (a) Representative trajectories of radius a = 1.6μm silica microspheres initially at
the center (x = 0) of line traps with intensities I(x) ∝ exp(−x2/(2σ2)). The σi values are
listed first, with the measured σm in parentheses. (b) The dependence of B, the measured
slope of F vs. x, on the Gaussian width σm. B crosses zero at σm = 8.4±0.7μm, revealing
the “flat” line trap for which radiation and gradient forces balance. Inset: The measured
position-dependent force, F(x), for σi = ∞.

Phase gradients therefore generate forces in the focal plane, an effect that Roichman et al. have
exploited to modulate colloidal particle dynamics in both linear and circular geometries [16].
Our expression Fr ∼ xI(x) preceding Eq. (2) for the radiative force in the x direction due to an
incident ray is therefore equivalent to the phase-gradient formulation if and only if the phase
profile is quadratic in the focal plane, PF , i.e. φ(x) ∼ x2.

The cylindrical mirror phase profile that began our discussion of line traps is quadratic in the
SLM plane, PC, i.e. φ(u) ∼ u2 (see Eq. (1)). The complex electric fields Ẽ(x) and E(u) at PF

and PC, respectively, are related by Fourier transformation [22]:

Ẽ(x) =
1
f λ

∫
E(u)exp

(
j
2π
f λ

xu

)
du. (8)

The SLM modulates the phase and not the amplitude of the optical field, and so E(u) =
E0 exp( jφ(u)), where E0 is a constant and φ(u) is given by Eq. (1). Applying Eq. (8),
Ẽ(x) = Ẽ0( f λ )−1 exp( jφ(x)) with

φ(x) =
2πumax

f λL
x2. (9)

In other words, a quadratic phase profile in PC creates a quadratic phase profile in PF and
therefore a geometric factor in Fr that increases linearly with x.

The phase profiles of our Gaussian traps (Eq. (7)) are not simple quadratic functions and
are not amenable to analytic Fourier transformation. Plots of φ(u) (Fig. 2(a)) show, however,
that the deviations from parabolic shapes are small enough that φ(u) can be approximated by
a series expansion in u2 up to second order. The φ(u) obtained from Eq. (7) differ from the
form φ(u) = au2 + bu4 by a root-mean-square deviation of less than 0.5 radians and yield a
mean value of bu4/au2 less than 0.12 over the full range of σ i examined. Applying Eq. (8) to
E(u) = E0 exp( jφ(u)) with phase factor φ(u) = au2 + bu4 and keeping only the lowest order
terms in bu2/a, Ẽ(x) = Ẽ0( f λ )−1 exp( jφ(x)) with

φ(x) =
2πumax

f λL
x2

[

1− 4b
a3

(
π
f λ

)2

x2

]

, (10)
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where the second term in brackets is small compared to 1. Therefore the φ(u) of our Gaussian
lines lead to phase profiles φ(x) in the focal plane that are similar enough to parabolic forms to
make Fr ∼ xI(x) a reasonable approximation to the true transverse radiative force.

This analysis raises the question: why not generate a field distribution in PF with an exactly
quadratic φ(x) and a Gaussian intensity profile? Such a field can provide balanced forces, as
seen by the generalized form of Eq. (2),

dφ
dx

I(x)−A
dI
dx

= 0. (11)

Similarly, a line trap with constant φ(x) and I(x) will also provide zero net force on trapped par-
ticles. In both of these cases, and in general, there is a significant problem with this approach:
the desired fields in PF generate, by Fourier transformation, fields in PC that vary in amplitude
as well as phase. (In the first case considered above the amplitude will be a Gaussian function
of u, in the second a sinc function.) The fields in PC are implemented by an SLM that modulates
only the phase of the incident light; even if it were also to modulate amplitude, such modulation
would be undesirable as it would necessarily involve a decrease in optical intensity. Grier and
co-workers have invented a method, termed shape-phase holography, by which amplitude mod-
ulation can be implemented with a “phase-only” SLM, mapping amplitude variations in E(u)
onto the number of pixels in v (the orthogonal axis in PC) that contribute to the line in PF [8].
Implementing the phase-gradient analysis described above, they have controlled the landscape
of forces acting on trapped colloidal particles using constant I(x) and variable φ(x) [16]. While
elegant and effective, the cost in laser power is enormous. For typical line geometries of the
sort implemented in our experiments, mapping the amplitude of a sinc function onto the v axis
in PC, for example, leads to less than 10 % of the SLM area contributing to the line trap; over
90 % of the available laser power does not contribute and is wasted.

Therefore, though inexact, our simple method of tuning optical forces in line traps has two
important attributes. First, the ray-optics picture provides a framework for the intuitive under-
standing of trap design. Second, our design efficiently directs available laser power to the line
trap, enabling the trapping of micron-scale particles in extended geometries with only tens of
milliwatts of total power, due to its intrinsically “phase-only” modulation in the SLM plane.
This leads to modulation in the focal plane of both I(x) and φ(x).

5. Conclusions

The potential energy landscape experienced by a line-trapped colloidal particle is a non-trivial
function of the line structure. By considering simple yet effective approximations to the optical
forces involved, we have designed a family of Gaussian line traps that enables the tuning of
that landscape without loss of optical intensity. The width of the Gaussian intensity function is
the crucial determinant of the confining potential; the line length, L, defines the extent of the
landscape, but σm controls its shape. The insights described above should be widely beneficial
to the study of colloidal interactions, especially in the case of long-range forces [23]. The
optical principles involved are moreover sufficiently general to also apply to very different
physical systems, e.g. trapped cold atoms and atomic condensates.
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