

Test Methods for Contactless Carrier Recombination Lifetime in Silicon Wafers, Blocks, and Ingots

Ronald A. Sinton

Sinton Instruments, Inc. Boulder, Colorado USA

SEMI Standards Meeting Hamburg, 21 September, 2009 Explore, evaluate, discuss, and create consensus-based standard measurement methods, specifications, guidelines, and practices that, through voluntary compliance, will promote mutual understanding and improved communication between users and suppliers of photovoltaic manufacturing equipment, materials and services to enhance the manufacturing efficiency and capability so as to reduce manufacturing cost of the photovoltaic (PV) industry. "

Carrier Recombination Lifetime

Carrier-recombination lifetime: The central parameter to the device design, production, and process control for silicon solar cells.

Why measure lifetime?

-After crystal growth: Process monitoring of feedstock contamination, contamination from crucible, bad growth conditions.

-After wafering: Qualify wafers for sale or purchase.

-After dopant diffusion: Monitor the quality of the dopant diffusion, check for chemical contamination, verify bulk lifetime, estimate final solar cell efficiency.

-After nitride deposition: Monitor nitride quality, optimize firing parameters for bulk and surface passivation quality.

-R&D: For use in characterizing bulk lifetimes and surface passivations. Input data for cell design and process optimization.

Metallic Impurities: Fe, Cr, Al, Au, Cu, others.

Can be from feedstock, crucible, gas contamination, chemical contamination.

Other defects: In boron CZ, B:O pairs, oxygen precipitates Crystalline defects: dislocations, grain boundaries

What determines measured lifetime?

- -Bulk lifetime
- -Surface Recombination
- -Wafer thickness
- -Dopant-diffused region recombination
- -Diffusion of excess carriers in the wafer or block

What are the excess carrier recombination lifetime and excess-carrier density ranges that are important for solar cells?

Lifetime: 0.1 to 10,000 μ s Carrier Density: 1x10¹³ to 5x10¹⁶ cm⁻³

Carrier Recombination Lifetime: 0.1 to 10,000 µs

Silicon Solar Cell I-V Curves

Injection level dependence of the Effective Excess-Carrier Recombination Lifetime

Excess carrier density (cm⁻³)

Fig. 1. The modeled recombination lifetime of a 3-ohm-cm B-doped CZ sample after degradation of the B:O defect[1]. This curve is based on recombination parameters from the studies of Bothe [1].

How To Write a "Lifetime" Test Method?

- 1) Develop a consensus: How should lifetime be measured so that the results are physically relevant for silicon solar cells and can be compared between laboratories, institutes, and industrial companies using different measurement methods?
- 2) Submit a document to become a test method.

Consensus: White Paper

1) General framework for a lifetime measurement and interpretation (sensor-type independent).

Contributors (white paper comments)

K. Bothe ISFH, Germany: μ-pcd, PhotoLuminescence, RFpcd, RF-QSSPC, Infra-red Lifetime Mapping.

T. Roth, Fraunhofer ISE, Germany: μ-pcd, PL, RF-pcd, CDI, RF-QSSPC, QSSPL.

W. Warta: Fraunhofer ISE (same tool experience).

R. M. Swanson, SunPower Corp, USA.

R. Falster: MEMC.

S. Johnston: NREL USA: μ-pcd, RF-pcd, RF-QSSPC, PL. K. Lauer, CiS Mikrosensorik, Germany: μ-pcd, QSSPC. J. Nyhus, REC, Norway: μ-pcd, luminescence, QSSPC. T. Trupke, BT Imaging, Australia: PL, QSSPC, QSSPL, Imaging PL.

L. Janssen, Solland, Netherlands: QSSPC, µ-pcd. N. Stoddard, BP Solar

A. Cuevas, Australian National University, QSSPC.

Contactless Carrier-Lifetime Measurement in Silicon Wafers, Ingots, and Blocks

- **1** Introduction
- **2** Measurement of carrier recombination lifetime in a sample.
- **3** The interpretation of lifetime data on wafers
- **4** Interpretation of Lifetime Data Taken on Ingots or Blocks

Table 1. List of contactless sensors in relatively widespreaduse in 2009 for determining lifetime in silicon using thedescribed measurement methodology.

Table 2. Parameters that should be reported from a lifetimemeasurement to make it unique and reproducible betweenlabs and different measurement techniques.

Contactless Carrier-Lifetime Measurement in Silicon Wafers, Ingots, and Blocks

- 5 Specific Example, Description of RF-photoconductance test method. (Very brief description).
- 6 **References:**

Steady-State Excess Carrier Lifetime

Transient Excess Carrier Lifetime

Generalized Quasi-Steady-State Excess Carrier Lifetime

Injection level dependence of the Effective Excess-Carrier Recombination Lifetime

Excess carrier density (cm⁻³)

Fig. 1. The modeled recombination lifetime of a 3-ohm-cm B-doped CZ sample after degradation of the B:O defect[1]. This curve is based on recombination parameters from the studies of Bothe [1].

Table 1. List of contactless sensors in relatively widespread use in 2009 for determining lifetime in silicon

Method	How is excess carrier density sensed?	Issues: Pros / Cons
RF-QSSPC	Eddy current sensing of Photoconductance Conversion to ∆n using known mobility function	Simple calibration that is valid for a wide range of samples. Requires mobility and photogeneration calculation or measurement. Non mapping or coarse mapping only. Trapping and Depletion Region Modulation artifacts at low carrier density.
RF Transient	Eddy current sensing of Photoconductance Conversion to ∆n using known mobility function	Simple calibration. Can be subject to trapping and DRM artifacts at low carrier density
ILM/CDI	IR free-carrier absorption or emission.	High-resolution imaging capability. Surface texture complicates interpretation, subject to trapping and DRM artifacts
μ-ΡCD	Microwave reflectance sensing of photoconductance. Carrier density can be set by bias light, or by injecting known number of photons in a very short pulse.	High-resolution mapping capability. Non-linear detection of photoconductance in some injection- level or dopant ranges, skin-depth comparable to sample thickness in some cases. DRM and trapping artifacts at low carrier density.
Photoluminescence	Band-gap light emission, model for coefficient of radiative emission. Model for re-absorption.	Artifact-free data available even below the intrinsic carrier density. Used in both non-imaging and high-resolution imaging applications. Strong doping dependence, photon reabsorption depends on surface texture, detector EQE, and wafer thickness.

Interpretation of lifetime data

Carrier Recombination Lifetime: Surface Recombination

Carrier Recombination Lifetime: Surface Recombination

Silicon Solar Cell I-V Curves

Interpretation of lifetime data

Ingots and Blocks

Wavelength dependence for QSS lifetime measurements on blocks

Electrons photogenerated near the surface recombine instantly, electrons created deep in the silicon live longer.

Monochromatic Light

Analytical calculation

Broadband Light (filtered Xenon)

PC1D simulation

What Carrier Density to Report (QSSPC)?

Sinton et al. ECPVSEC Paris 2004, Bowden et al. JAP 2007.

istruments

High-lifetime silicon CZ or FZ boules

Transient PCD on blocks or boules

PC1D simulations

Transient PCD on blocks or boules

30 ms 32

Data: Taking Measurements

How to actually do a lifetime measurement: 4 steps.

- 1) Illuminate a sample, and measure the resulting signal with the sensor, (Raw data).
- 2) Use a calibration curve to convert the signal into physical units.
- **3**) Convert the physical units into carrier density vs. time, illumination.
- 4) Evaluate the excess-carrier recombination lifetime by applying the equations for the transient, QSS, or steady-state case.

Table 2. Parameters to Report (sufficient for comparison between
labs and methods)

	Measured lifetime, τ _{eff}
Results:	Carrier density (or range) to report lifetime
	Interpretation (if any): S, τ_{bulk} , J _{oe}
	Thickness
Sampla navamatara	Doping (cm ⁻³)
Sample parameters:	p- or n-type
	Surface passivation (front and back)
	Transient, QSS, or Generalized
Analysis type:	Excitation Wavelengths
	Trapping or DRM correction (if required)
	Light time profile
	Sensor type and calibration to Δn
Instrument	Sense depth (ingot or block only unless sensitivity varies over a wafer thickness)
parameters:	Photogeneration calibration
	Detection area, number of points, method of averaging points (if any).

Table 2. Parameters to Report (sufficient for comparison between
labs and methods)

	Measured lifetime, τ_{eff}
Results:	Carrier density (or range) to report lifetime
	Interpretation (if any): S, τ_{bulk} , J _{oe}
	Thickness
Sampla normatora	Doping (cm ⁻³)
Sample parameters:	p- or n-type
	Surface passivation (front and back)
	Transient, QSS, or Generalized
Analysis type:	Excitation Wavelengths
	Trapping or DRM correction (if required)
	Light time profile
	Sensor type and calibration to Δn
Instrument	Sense depth (ingot or block only unless sensitivity varies over a wafer thickness)
parameters.	Photogeneration calibration
	Detection area, number of points, method of averaging points (if any).

Parameters to Report (sufficient for comparison between labs and methods)

/	 пп	1.7
L & V	 	1.5-

	1		
Result description	Symbolic	Value	Units
Measured effective lifetime	τ_{eff}		seconds,ms,µs
Carrier density range	Δn		cm ⁻³
Interpretation parameters [if			
any]			
Surface recombination	S		cm²/s
Bulk lifetime	τ_{bulk}		seconds,ms,µs
Emitter saturation current	J _{oe}		A/cm ²
Other			

Interpretation Notes:

Sample Parameters:

Parameter description	Symbolic	Value	Units
Sample thickness	w		cm,µm
Doping concentration	N _A (N _D)		cm⁻³
Doping type	n/p		
Surface passivation, front and back	-		
Defect state [if applicable]	-		
Fe dissociation level	-		
B:O degradation level	-		
Other			

Analysis type:

Quasi-steady-state (QSS) Generalized

Excitation wavelengths/frequencies	
Transfer function τ_{eff} to τ_{bulk}	
Trapping or DRM correction [if any]	

Instrument Parameters:

Parameter description	Value	Units
Light time profile		
Calibration of photogeneration		
Sensor type		
Calibration to Δn		-
Sense depth		cm,µm
Detection area		
Area		
Number of points		
Method of averaging points [if any]		

Table 1. Parameters to Report (sufficient for comparison
between labs and methods)

Results:

Result description	Symbolic	Value	Units
Measured effective lifetime	$ au_{eff}$		seconds,ms,µs
Carrier density range	Δn		cm⁻³
Interpretation parameters [if			
any]			
Surface recombination	S		cm²/s
Bulk lifetime	τ _{bulk}		seconds,ms,µs
Emitter saturation current	J _{oe}		A/cm ²
Other			

Interpretation Notes:

Sample Parameters:

Parameter description	Symbolic	Value	Units
Sample thickness	W		cm,µm
Doping concentration	$N_A (N_D)$		cm⁻³
Doping type	n / p		
Surface passivation, front and back	_		
Defect state [if applicable]	_		
Fe dissociation level	_		
B:O degradation level	-		
Other			
		~	

Table 1. Parameters to Report (sufficient for comparison between labs and methods)

nalysis	type:		
	Transient		
	Quasi-stead Generalized	dy-sta d	ate (QSS)
	Excitation wavelengths/frequencie	es	
	Transfer function τ_{eff} to τ_{bulk}		
	Trapping or DRM correction [if any	y]	

Instrument Parameters:

Parameter description	Value	Units
Light time profile		
Calibration of photogeneration		
Sensor type		
Calibration to Δn		
Sense depth		cm,µm
Detection area		
Area		
Number of points		
Method of averaging points [if any]		

One specific example:

Carrier recombination measurements using an RF-eddy-current conductance sensor

(**RF-QSSPC**, **RF** Transient **PCD**)

Light source, reference intensity sensor, and photoconductance sensor.

Step 1: Take data.

Step 2: Conductance Calibration: Traceable to 4-point-probe

Lifetime Tester Calibration

• The mobility equation converts the conductivity to an average carrier density.

$$\Delta n = \frac{\Delta \sigma}{qW(\mu_n(\Delta n, N_A) + \mu_p(\Delta n, N_A))}$$

Step 4: Carrier density vs. time & light.

Fig. 1. The recombination lifetime of a 3-ohm-cm B-doped CZ sample after degradation of the B:O defect[1]. This data was obtained by the QSSPC method[2] and has uncertainties less than 10% in both the lifetime and carrier-density axis.

Conclusions:

White Paper: A consensus on a fundamental framework for silicon PV carrier recombination lifetime testing.

The analysis applies to any sensor, facilitating comparisons between labs and methods.

Results based on this framework are physically rigorous and suitable for use in solar-cell modeling, optimization, and process control.

