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We present a method for submicrometer tomographic imaging using multiple wavelengths in digital
holographic microscopy. This method is based on the recording, at different wavelengths equally sepa-
rated in the 2 domain, in off-axis geometry, of the interference between a reference wave and an object
wave reflected by a microscopic specimen and magnified by a microscope objective. A CCD camera records
the holograms consecutively, which are then numerically reconstructed following the convolution for-
mulation to obtain each corresponding complex object wavefront. Their relative phases are adjusted to be
equal in a given plane of interest and the resulting complex wavefronts are summed. The result of this
operation is a constructive addition of complex waves in the selected plane and destructive addition in the
others. Tomography is thus obtained by the attenuation of the amplitude out of the plane of interest.
Numerical variation of the plane of interest enables one to scan the object in depth. For the presented
simulations and experiments, 20 wavelengths are used in the 480-700 nm range. The result is a

sectioning of the object in slices 725 nm thick. © 2006 Optical Society of America

OCIS codes:

1. Introduction

The study of the internal structures of specimens has
great importance in life and materials science. Thus
different techniques of optical tomographic imaging
have been developed to achieve the reconstruction of
the optical properties of 3D specimens. The principle
of so-called optical diffraction tomography (ODT) con-
sists of recording the complex wave diffracted by a
specimen while changing the k vector of the illumi-
nating wave. This way, the frequency domain of the
specimen is scanned, allowing for the reconstruction
of the scattering potential of the specimen in the
spatial domain. The theoretical basis of ODT was
established in the 1970s by Wolf,! Carter,2 Diandliker
and Weiss,? and Fercher et al.4
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In spite of the great application potential, few suc-
cessful applications of the ODT techniques to micro-
scopic imaging have been reported, certainly because
the accurate recording of the complex diffracted waves
may involve complicated implementations. Phase-
shifting interferometry combined with varying the il-
lumination direction was, for example, used by Lauer
for the observation of bacteria and yeasts.> Barty et al.
obtained quantitative refractive index measurements
on optical fibers, owing to their phase-retrieval algo-
rithm based on three intensity measurements per-
formed on different focus planes, combined with a
rotation of the specimen relative to a fixed illumination
beam.® Recently, Charriere et al. demonstrated that
digital holographic microscopy could successfully be
applied to cell tomography,” obtaining the first quan-
titative refractive index measurement with an ODT
technique applied to a biological specimen.

Another way to perform ODT consists of changing
the wavelength instead of changing the k direction.
In other words, the frequency domain and specifically
the diameter of the Ewald is scanned by changing
the wavelength. This technique, developed along the
guidelines fixed by the diffraction tomography theo-
rem (see also Refs. 1-4), may appear as rather com-
plex and cumbersome in its practical application. In
contrast, digital holography yields a particularly sim-
ple way to express indirectly the diffraction tomo-
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graphy theorem: Remaining in the direct space, to-
mography of the object can be achieved by the super-
position of reconstructed wavefronts from holograms
taken at multiple wavelengths. This had been pro-
posed several years ago by Marron and Schroeders
and Marron and Gleichman,® who called it holo-
graphic laser radar. They used an in-line holographic
configuration in which the images are focused on the
camera. The combination of several phase-shifted ac-
quisitions allows the phase retrieval. Reference to a
similar approach was also described by Arons and
Dilworth® as Fourier synthesis holography. More
recently, the feasibility of section imaging by wave-
length scanning digital holography was demonstrated
by Kim1112 and Yu and Kim314 on a macroscale.
Dakoff et al.15 used the same method at the microscale
but with an axial resolution of 11 pm.

In this paper, it is demonstrated that digital holo-
graphic microscopy (DHM), allowing us to recon-
struct the complex wavefront of an object wave from
a single recorded hologram,6:17 is a particularly
well-suited technique to achieve multiwavelength to-
mography. Moreover, the digital optics developed by
Colomb et al. and applied in this paper allows for the
compensation of the phase aberrations,8:19 but also
what is imperative is to reach the theoretical resolu-
tion limit of the method for chromatic aberrations
(position and scale different for each wavelength
wavefront reconstruction).20 We demonstrate that
DHM multiwavelength tomography enables, for the
first time to our knowledge, the performance of tomo-
graphic imaging with an axial accuracy under the
micrometer and a lateral resolution down to the dif-
fraction limit without using a mechanical scan.

2. Digital Holography

A. Setup

The experimental setup is based on a classical Mach—
Zehnder off-axis holographic interferometer (Fig. 1).
The light source is generated by an argon-ion plasma
laser (Coherent Innova 200) pumping a mode-locked
Ti:sapphire laser system (Coherent Mira 900). The
beam is then amplified by a regenerative amplifier
(Coherent RegA 9000) and finally extended in a wave-
length with a tunable optical parametric amplifier
(OPA; Coherent OPA 9400). The beam coming from
the OPA is split. On one side, the object beam O
illuminates the sample through the microscope objec-
tive (MO; focal length of 18.4 mm, NA = 0.15, mag-
nification of ~10X) and the backscattered field,
collected by the MO, interferes on the CCD with the
reference beam R to produce a hologram. The irradi-
ance at the specimen plane is of the order of hun-
dredths of microwatts per square centimeter, slightly
varying depending on the wavelength. In our case,
the hologram is recorded in an off-axis geometry,
meaning that a small angle 6 is introduced between
both waves. As the coherence length of the OPA beam
is short (~60 pwm), the optical length of the reference
beam is adjusted to the one for the object with a delay
system (DS). Two more lenses are used: one is the
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Fig. 1. Experimental setup. O, object arm; R, reference arm; OPA,

adjustable wavelength laser; NF, neutral filter; BS, beam splitters;
BE, beam expander; MO, microscope objective; OC, object beam
condenser; RL, reference lens; CCD, charged-coupled device cam-
era; DS, delay system.

object beam condenser (OC) that focuses the object
beam at the back focal length of the microscope ob-
jective so it has a collimated beam illuminating the
sample, and the second is the reference lens (RL) that
curves the reference beam to match approximatively
the curvature introduced by the MO on the object
beam in the CCD plane. This curvature matching is
approximative and does not require an exact and
delicate adjustment of the RL position because the
residual curvature difference can be easily compen-
sated for numerically as presented in the next sub-
section. We note that the image of the specimen
through the MO is not focused on the CCD camera.
The tomographic imaging will be computed from a
sequence of 20 holograms recorded with 20 different
wavelengths without moving any part of the setup,
except the DS will compensate for dispersion between
each wavelength and neutral filter to adjust the beam
intensity.

B. Reconstruction Principle

The addition principle presented in Section 3 re-
quires that the specimen size and position that ap-
pear in the reconstruction plane obtained from the
different wavelengths must be identical. Ferraro
et al.2! have demonstrated that a padding technique
allows us to control the image size as a function of
distance and wavelength within the single Fourier
transform formulation of the numerical propagation
in the Fresnel approximation. But the presented pad-
ding technique does not take into account the chro-
matic aberrations of the optics in the setup and
especially those of the MO. Chromatic aberrations of
the MO induce small differences in the magnification,
the lateral position, and the focalization position of the
specimen images. Therefore the convolution formula-
tion is preferred with the advantage of keeping the
pixel size constant at any reconstructed plane regard-
less of the reconstruction distance and enabling the
use of numerical lenses to compensate for the chro-
matic aberrations as presented in Ref. 20.



Fig. 2. Chromatic aberration compensation. The amplitude and
the phase reconstructions are presented, respectively, on the left
and on the right (the phase values between —180° and 180° are
linearly distributed on the gray scaling). The wavelength and the
reconstruction distances are (a), (b) A = 480 nm, d = 2.7 cm and
(c)—(f) A = 700 nm, d = —0.30 cm. The white rectangles and lines
define, respectively, the specimen size and position, (solid lines) for
the reference defined at 480 nm and (dashed lines) for the recon-
struction before the application of the numerical magnification and
shift at 700 nm. (e), (f) Reconstructions by applying a magnifica-
tion M = 1.0038 and a numerical shifting to achieve a perfect
superposition of the reconstructed specimen for all the wave-
lengths.

The numerical reconstruction of the holograms is
thus done in four steps. The first one consists of fil-
tering in the hologram frequency domain the unde-
sired diffracted images (zero order and conjugate
image).22 The second one consists of compensating for
the phase aberrations (tilt due to the off-axis geome-
try, curvature due to the MO not compensated for by
the RL,23 astigmatism, spherical aberration, etc.) by
placing a numerical parametric lens in the hologram
plane defined with a reference conjugated hologram?®
or with an automatic fitting procedure.?8:20 The third
step is to propagate the corrected reconstructed ob-
ject wave from the hologram plane to its focalization
plane by adjusting the reconstruction distance [Figs.
2(a)-2(d)]. Finally, the sizes and the lateral positions
of the specimen in the different reconstruction planes

Fig. 3. Reconstructed mean amplitude from the 20 holograms
recorded at different wavelengths (a) before and (b) after compen-
sation of the chromatic aberrations.

are adjusted to be identical by the use of other nu-
merical lenses as presented in Ref. 20 [Figs. 2(e) and
2(f)]. One should note that the aberration compensa-
tions, principally for the tilt, allow for the use of the
convolution formulation of the Fresnel propagation
(see Ref. 23 for the exact formulation of the convolu-
tion Kernel) without constraint in the reconstruction
distance (small distances become possible without
aliasing) giving no particular advantage to the so-
called angular spectrum method as stated by Kim
et al.24

Figure 3 presents the average of the 20 amplitude
images reconstructed from the 20 corresponding ho-
lograms recorded at different wavelengths: without
[Fig. 3(a)] and with [Fig. 3(b)] the application of the
numerical magnification and shifting procedure; Fig.
3(b) shows clearly that the procedure is essential for
suppressing the blur because of the mismatch in size
and position for the different wavefront reconstruc-
tions. In the case of a specimen composed of a constant
step as presented here, this mismatch is responsible
for a loss in resolution in the edges of the steps but has
no influence on the axial accuracy in the central area of
each step. This loss is difficult to describe analytically,
as the tilt and scale factor due to chromatic aberration
depends strongly on the experimental setup. The nu-
merical correction here allows for the extension of the
zone of maximal axial accuracy to the entire field of
view, which is absolutely necessary for a reliable to-
mographic reconstruction in the case of a non-step-
by-step constant specimen, in cellular imaging, for
example.

3. Addition Principle

As already mentioned, the tomographic technique
applied in the present work was first introduced by
Marron and Schroeder® and Marron and Gleishman?
and was later successfully applied to digital hologra-
phy by Kim.11.12 The formalism used recalls the no-
tations from Ref. 11 as well as some presentation
aspects.

Let us assume that the different scattering cen-
ters in the specimen do not interfere with each
other and that the scattering potential weakly de-
pends on the wavelength. In this case, when the
object is illuminated (IW in Fig. 4), the field dif-
fracted by an object point P located at (x,, y,, z,) and

10 November 2006 / Vol. 45, No. 32 / APPLIED OPTICS 8211



Oxp2)

P(x0,y0.20)

Fig. 4. Schematic of the scattering by a point P located at
(0, Y0, 20) and measured at an arbitrary point @ = (x, y, z) within
an object with refractive index distribution n(x,y, z): IW is the
illuminating wave, §, is the incident wave direction, §, is the col-
lection direction between P and Q.
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Using the propriety >X'r/ = (1 — rV)/(1 — r) and
writing & = (Bpin + Rmax)/2, this last equation can
finally be written as

V(Q) o f A(P)exp(ikrpq)T(rpo)d’rpg, (3)
\4
where exp(il%rpQ) is a constant phase term. T'(rpg) can

be seen as an amplitude filter function with these
extrema:
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measured at an arbitrary point @ = (x, y, z) (Fig. 4)
can be written as Huygens spherical wavelet pro-
portional to A(P)exp(ikrpq), where rpg = n|rp — rg| is
the optical path length (OPL) between P and @ and n
is the refractive index. The 1/r dependence of the
amplitude may be neglected in the case of a micro-
scopic object. For an extended 3D object, the field at
@ is proportional to the above wave field integrated
over all the points of the object in the volume V:

V(@) x f A(P)exp(ikrpg)d’rpq. (1)

v

Let us exploit the fact that a number N of copies
of the electric field distribution can be generated by
varying the wavelength (and thus the wavenumber
k); let us take N k vectors k; lying within the range
of [Bmin, Bmax] Tregularly separated by A. We have

2 2 Foax — Bin

kmin = )\max, - my N-1

Assuming that the object illumination conditions are
identical, the result of the superposition of the mul-
tiple electric fields at @ is
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where p and g are integers.
If we consider an infinite wavelength range, then
T(rpq) converges to a Dirac function:

lim ¥(Q) f A(P)exp(ikree)d(rpe)d’rrg < A(Q). (5)

N-» v

In other words, the spatial contributions of the field
diffracted from points other than @ are eliminated. In
practice, if one uses a finite number N of wavelengths
at regular intervals Ak, then the object image A(P)
repeats itself at axial distances A = 2mw/Ak with an
axial resolution of 8 = A/N. By using appropriate
values of Ak and N, A can be matched to the axial
extent of the object and 3 to the desired level of axial
resolution. An example of this amplitude filter func-
tion is presented in Fig. 5.

Note that because the different complex fields re-
quired for tomography are acquired in the present
work in a reflection geometry, the light travels back
and forth in the medium. For two points defining a
ray parallel to the optical axis, the measured optical
path length rpq thus corresponds to twice the OPL
between P and @. The definition of 75 considering the
reflection geometry is thus rpg = 2n|rp — rg|. The
effective axial resolution and axial extent have thus
to be divided by a factor of 2. In the following text, the
presented values of the OPL will be considered for the
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Fig. 5. Filter obtained by the sum of 20 % regularly separated
wavelengths taken between 480 and 700 nm. Axial extent of

A = 14.5 pm, axial resolution of = 725 nm.

reflection geometry and the reflective effective path
lengths as already considered in Fig. 5.

4. Digital Holographic Microscopy Tomography

Several holograms of the object are taken at different
wavelengths and each corresponding electric field
distribution is reconstructed independently at its
own wavelength and corrected for phase and chro-
matic aberrations as described above. The retrieved
complex wavefronts ¥, correspond to the waves back-
scattered by the object. Note that the phase of each
wavefront is defined up to a constant offset that is
different for each wavelength. This floating phase
introduces a random phase factor ¢; in Eq. (2):

V@ = 3 VQexpie). ©®)

To obtain the sectioning effect thanks to the addi-
tion of complex fields, all the fields ¥; at the object
point P must have the same phase. If not, the wave-
fronts will sum up in a random way, which prevents
a constructive addition of the ¥, amplitudes.

Compared to previous works,'1-12 we have imple-
mented here the technique originally described by
Marron and Schroeder® and Marron and Gleichman?
in the direct space instead of the Fourier space. The
handle of this floating phase is problematic; it takes
advantage of the full numerical access to the recon-
structed data. The method is based on the selection of
a reference zone in the image (dashed rectangles in
Fig. 6), which corresponds to a purely reflective area
of the specimen, knowing therefore that all the illu-
minating wavefronts at different wavelengths have
been reflected identically on that specific zone. A
phase shift is then numerically introduced in each
reconstructed wavefront to get the same phase on the
selected reference zone (Fig. 6). This is performed by
subtracting the mean phase value in the reference
zone from the whole phase map in the image, fixing
the phase to zero for every point in this zone. When

Fig. 6. Application of a phase shift to obtain the same phase on
the selected reference zone defined by the dashed rectangle. The
mean phase values computed in the same area defined in Figs. 2(b)
and 2(f) are subtracted from the entire phase images of Figs. 2(b)
and 2(f) and give, respectively, (a) and (b).

summed up, the ¥; will add constructively for that
reference zone and every other point of the object hav-
ing a similar phase defining a tomographic section of
isophase surfaces.

Once the ¥; are referenced, tomographic sectioning
can be performed in any further plane of interest a
distance of € in the OPL from the reference zone by
adding a proper constant given by Eq. (7) to the phase
of each wavefront. An OPL e above or behind this
zone involves a phase difference Ap depending on the
wavelength \;:

Ap; =~ e (7

The reference area has thus to be selected only once
to scan the whole specimen in depth. One should
note that the presence of a reference zone in the
field of view is mandatory for the proposed tech-
nique. In the case of a noisy or diffuse specimen, one
should define a reference zone as large as possible to
remove the random noise and keep only the average
offset value of the area. If the entire field of view is
strongly diffusive or composed of multiple layers
contributing to the backscattered collected signal
the described strategy cannot be directly applied.

5. Simulations and Experiments

Simulations and experiments have been conducted to
demonstrate the validity of the method. Twenty ho-
lograms have been both simulated and recorded ex-
perimentally with regularly k-spaced wavelengths in
the 480—700 nm range. The corresponding amplitude
filter created by summing the given 20 wavefronts is
the one presented in Fig. 5. Thus the resolution & is
given by the first zeros of the function and the axial
extent A by distance between two maxima. With the
used parameters, the axial resolution is 725 nm, and
the axial extent is 14.5 pm.

A custom test target has been designed to estimate
the resolution of this tomographic method and to see
if the experimental tomographic filter corresponds to
the above-presented filter function. First, simula-
tions have been created with a digital version of the
test target specimen (Fig. 7), defined as five steps
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Fig. 7. Simulated target with steps of 375, 525, 975, 1200, and
1275 nm.

of 375, 525, 975, 1200, and 1275 nm heights, each
50 X 250 pixels large, in the center of a 512 X 512
pixel matrix. The wavefronts reflected by this speci-
men at all the different wavelengths are, respec-
tively, calculated and propagated according to the
Fresnel integral over a distance d (20 cm) to the ho-
logram plane. Each wavefront is then superimposed
to the corresponding reference wave, and the result-
ant intensities form the simulated holograms recon-
structed as described above.

Second, experiments have been conducted using a
homemade realization of the same test target built by
structuring silicon oxide (SiO,) layers on a silicon

Simulations

525 nm
D)

Experimental

wafer. The sample is 250 um large with five steps of
equal dimensions. Nevertheless, due to etching prop-
erties, the highest steps are no longer perfectly rec-
tangular but have been attacked in the corners dur-
ing manufacturing. A Plasmos SD2300 ellipsometer
has been used to accurately verify that the height of
all the steps corresponded to the designed values (er-
rors below 2%). The wafer has finally been recovered
with 10 nm chrome and 100 nm gold to ensure a total
reflection on its surface.

6. Results

The results of the tomographies are shown in Fig. 8:
The tomographies obtained with the simulated holo-
grams are presented on top, and on the bottom those
obtained with the experimental holograms are shown.
The heights of the six reconstructed sections are those
of the base [Figs. 8(b), 8(B)—0 nm] and the five steps
of the specimen [Figs. 8(c), 8(C)—375, 8(d), 8(D)—525,
8(e), 8(E)—975, 8(f), 8(F)—1200, and 8(g), 8(G)—1275
nm]. Amplitude images, calculated as the average of
all the reconstructed ¥; amplitudes, are shown in
Figs. 8(a) and 8(A) for both the simulated and the
experimental specimens. The presented tomographic
sections clearly show the attenuation of the out-of-
focus planes: They get darker as the distance to the
plane of interest increases. Each step is distinct from
the others due to the filter produced by the addition of
the complex wavefronts. The steps that are separated

1200 nm

1275 nm

Fig. 8. Simulated (lower-case letters) and experimental (upper-case letters) results of six reconstructed sections at 0, 375, 525, 975, 1200,
1275 nm [(a), (b), (¢c), (d), (e), (), respectively] as well as the specimen average amplitudes of the (a) simulated and (A) experimental targets.
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Fig.9. Normalized intensity profiles T'(rpq) for the 0, 375, 525, 975, 1200, 1275 nm planes of interest [(a), (b), (¢c), (d), (e), (f), respectively].
S denotes the results for the simulated specimen and E is for the experimental data.

from the step of interest within a gap smaller than
the axial resolution are not clearly eliminated, owing
to the insufficient attenuation of the filter. The best
attenuation is obtained for a gap of 750 nm as shown
in Figs. 8(d), 8(D) and 8(g), 8(G) between the second
(525 nm) and the fifth (1275 nm) steps for negative
[Figs. 8(d), 8(D)] or positive gaps [Figs. 8(g), 8(G)].
This corresponds to the theoretical predictions where
the first total cancellation of the filter function is
obtained at 725 nm. The 750 nm gap is clearly the
nearest available gap; the theoretical resolution is
verified in both simulated and experimental results.

These considerations can be quantitatively con-
firmed with the filter coefficient profiles defined by
the division of the tomographic images by the ampli-
tude image without tomography across the center of

the image. Figure 9 shows that for a coefficient equal
to 1, the plane is unfiltered and corresponds to the
plane of interest. The larger the gap from this refer-
ence plane, the lower the filter coefficient and the
corresponding intensity.

The resolution of the tomography is also shown in
Figs. 9(c) and 9(f) where the 750 nm gap is present.
The 1275 nm step in Fig. 9(c) and the 525 nm one in
Fig. 9(f) are nearly zero. Theoretically, the filter func-
tion value should be 0.033. The coefficients for the
simulations are 0.033 and 0.044 for Figs. 9(c) and 9(f),
respectively, and 0.088 and 0.132, respectively, for
the experimental data.

The six sections in the tomography also enable us
to retrieve the filter function curve as shown in Fig.
10. The curve is the theoretical prediction and the
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points represent the results of the tomographic pro-
cess with white dots for the simulation and black ones
for the experimental data. A section has been created
at each step and at the base of the test target. For
each of the six sections, the mean value of the filter
function has been measured on each step and on the
bottom (six mean values for each section). These val-
ues have been reported on the graph regarding the
gap between the measured step height and the sec-
tioning plane height (plane of interest). The slight
imperfections in the reconstruction process, such as
the adjustment of the reference wave parameters and
the filtering of the zero order and the twin images,
influence both the experimental results and the sim-
ulations, while the setup imperfections (lenses and
beam splitters, for example) and the wavelengths’
precision influence only the experimental data. An-
other error comes from the incertitude on the height
of the experimental specimen that can reach up
to 2%. The standard deviation with the theory is
2.6 X 102 for the simulation and 3.9 X 102 for the
experimental results, demonstrating excellent agree-
ment and consequently independently validating the
reconstruction process as well as the experimental
setup.

7. Conclusion

Submicrometer tomography can be performed on mi-
croscopic samples using DHM. Simulations and ex-
periments validated the statement of the proposed
method. Optical sectioning with a resolution of 725 nm
has been achieved, corresponding to the theoretical
predictions. Owing to the large wavelength range and
the accurate complex field reconstruction, this reso-
lution is, to the best of our knowledge, the best that
has ever been achieved with multiple wavelength to-
mography. Note that it still can be improved by tak-
ing holograms in a larger wavelength range, which
will reduce the central peak width of the filter func-
tion.

The proposed technique has the advantage of a
simple and robust setup; all sensitive parts such as
phase compensations or abberation corrections are
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numerically controlled. The digital focusing capabil-
ity of DHM also leads to an extended depth of field
while keeping a relatively large NA to preserve high
lateral resolution. This last point is a great advantage
over equivalent optical coherence tomography tech-
niques. The numerical possibilities of tomography
by multiple wavelengths in digital holography open
large signal processing possibilities to further en-
hance the tomographic results, as will be pointed out
in a future paper.

This work was funded through research grants
2153-067068.01 and 205320-103885/1 from the Swiss
National Science Foundation.
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