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Wave-front reconstruction from multidirectional
phase derivatives generated

by multilateral shearing interferometers

Sabrina Velghe, Jérôme Primot, and Nicolas Guérineau

Theoretical and Applied Optics Department, Office National d’Etudes et de Recherches Aérospatiales, Palaiseau 91761, France

Mathieu Cohen and Benoit Wattellier

Phasics S.A., Campus de l’Ecole Polytechnique, Palaiseau 91128, France
Received July 19, 2004

To increase the accuracy of wave-front evaluation, we propose to exploit the natural capability of multiple
lateral shearing interferometers to measure simultaneously more than two orthogonal phase derivatives. We
also describe a method, based on Fourier-transform analysis, that uses this multiple information to reconstruct
the wave-front under study. © 2005 Optical Society of America
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Lateral shearing interferometry is commonly used by
the optics community to test lenses and laser beams
and to control adaptive optics. Indeed, it offers the
crucial advantage that it yields an analyzed wave
front without the use of a reference wave. Usual
lateral shearing interferometers (LSIs) generate only
one replica of an analyzed wave front,1 and analysis of
the obtained interference fringes can only lead to the
wave-front derivative in the direction of shear. To
avoid error propagation, reconstruction methods based
on the least-squares estimation require the wave-front
derivative in two orthogonal directions. Thus,
with these LSIs, two measurements must be made
separately along two orthogonal directions of shear.2

Recently, a new family of LSIs that we call multi-
LSIs was developed. They are based on interference
of more than one replica of an analyzed wave front
with different directions of shear. In this family there
are several types: (a) the cross-grating LSI,3 which
is used in diffraction-limited extreme-ultraviolet
optics; (b) the three-wave LSI,4 which is largely
used for intense laser beam evaluation, correction,
and shaping5 – 9; (c) the modified Hartmann mask
(MHM),10,11 which is devoted to laser beam evaluation;
and (d) the Shack–Hartmann wave-front sensor,12

which uses an array of microlenses, which is preva-
lent in the domains of adaptive optics or ophthalmic
evaluation. It is not common to consider this last
setup a LSI. However, considering that the array of
microlenses is a bidirectional phase grating,13,14 the
Shack–Hartmann wave-front sensor enters naturally
into the family of LSIs described here.

To show the capability of multi-LSIs to measure
more than two orthogonal derivatives and for sim-
plicity, let us consider the MHM, which diffracts four
replicas of the incoming wave front in a Cartesian
geometry. A schematic interference pattern of this
configuration is shown in Fig. 1. The advantage of
such a geometry is that the wave-front derivatives
in the two usual orthogonal directions x1 and x2 can
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be measured simultaneously because of the separate
study of the interference of the two couples of beams
sheared along x1 and then along x2. Nevertheless,
considering the global interference of the four beams,
information on the wave front according to the cross
directions (x3 and x4) appear naturally. Finally, one
can exploit four derivatives in the four directions of
shear to obtain the wave front. This thought process
can be generalized to other multi-LSIs, and so the
study of their interferogram can provide wave-front
derivatives in multiple directions of shear. We pro-
pose to use these additional derivatives to improve the
accuracy of reconstruction.

To detail our method of measurement and for sim-
plicity, we first consider a multi-LSI without taking

Fig. 1. Schematic interference pattern of four replicas in a
Cartesian geometry and definitions of the shear directions.
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into account the boundaries of the intensity profile.
The analysis of the interference pattern leads to n
derivatives of an analyzed wave front W in n differ-
ent directions xn.15 The derivative in the jth direction
will be noted Gxj . For each direction xj , the Fourier
transform of the derivative is given by

G̃xj � 2ipuj
fW , (1)

where fW is the Fourier transform of W and uj is the
conjugated variable of xj in the spatial frequency do-
main. To obtain an estimate fWe of fW , we calculate a
quadratic cost function by use of

E�fW � �
X
j

jG̃xj 2 2ipuj
fW j2. (2)

The quantity fWe is computed as the minimizer of
this cost function and is given by

fWe �
2i
2p

P
j ujG̃xjP
j uj

2
. (3)

In theory, for finite support, extrapolation of
the wave front beyond the boundaries by use of a
Gershberg-type algorithm16 must be done, as already
applied by Roddier and Roddier17 in the particular
case in which only two orthogonal derivatives are
available. In practice, if the number of measurement
points is large, then the noise caused by the support
often becomes negligible compared with the noise of
the derivatives. In this case, the step of extrapolation
can be avoided.

Another method of reconstruction proposed by
Legarda-Sáenz et al.18 can be used. Their algorithm
is based on the least-squares method and estimates
the wave front from several directional derivatives
of itself obtained by multiple acquisitions of fringe
patterns with different displacement vectors.

We applied the reconstruction technique expressed
by Eq. (3) to a numerical example in which an
aberrated wave front [see Fig. 2(a)] impinges on a
MHM. In this case, four derivatives are available
and can be numerically extracted from the Fourier
transform of the deformed interferogram in the over-
lap region of the four beams.15 In practice, they are
computed by means of a judicious selection of four
harmonics in that spectrum (see Fig. 3). In this par-
ticular case the harmonics along u1 and u2 are twice
as high as those along u3 and u4, and the derivatives
deduced from the study of harmonics along u3 and
u4 are multiplied by

p
2 in comparison with those

measured in the x1 and x2 directions because of the
larger shear distance in the x3 and x4 directions. The
signal-to-noise ratio of the derivatives along x3 and
x4 is then

p
2 times smaller than the signal-to-noise

ratio of the derivatives measured along the x1 and
x2 directions. To take into account this decrease,
we can weight the measured derivatives in terms of
its signal-to-noise ratio in our reconstruction. The
algorithm presented above is applied to these weighted
derivative maps. Assuming white centered noise in
the computed interferogram, two reconstructions have
been made [shown in Figs. 2(b) and 2(c)]: first from
the two usual orthogonal derivatives as is classically
done (according to x1 and x2) and then from the four
available derivatives. Figure 2(d) shows histograms
of the error on these two reconstructed wave fronts.
The curves show that the noise decreases because of
the use of more than two derivatives, as discussed
by Legarda-Sáenz et al.18 In the example presented
here, the fact that four derivatives are used instead of
two leads to a noise reduction of �18%.

Fig. 2. (a) Computed impinging wave front W0, (b) recon-
structed wave front with two orthogonal derivatives W2G,
(c) reconstructed wave front with four derivatives W4G ,
(d) histograms of the difference between the noiseless
and the reconstructed wave fronts with two orthogonal
derivatives (dashed curve) and with four derivatives (solid
curve).

Fig. 3. Fourier transform of the interferogram produced
with a MHM.
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In conclusion, we have reported that a new family
of LSIs has the natural capability to measure simul-
taneously more than the two orthogonal derivatives
that are commonly used to reconstruct the wave front.
This capability is characterized by the presence of
many harmonics in the interferogram spectrum. We
have therefore proposed a method of reconstruction
that takes into account all the de facto information
included in the interferogram, which reduces the noise
of the reconstructed wave front. Note that, for each
multi-LSI a specif ic strategy, taking into account the
signal-to-noise ratio of each harmonic, must be applied
to obtain the optimal reconstruction.

S. Velghe’s e-mail address is sabrina.velghe@
onera.fr.
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