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ABSTRACT 

Digital holography enables the creation of multiple optical traps at arbitrary three-dimensional locations and spatial light 
modulators permit updating those holograms at video rates. However, the time required for computing the holograms 
makes interactive optical manipulation of several samples difficult to achieve. We introduce an algorithm for computing 
holographic optical tweezers that is both easy to implement and capable of speeds in excess of 10 Hz when running on a 
Pentium IV computer. A discussion of the pros and cons of the algorithm, a mathematical analysis of the efficiency of 
the resulting traps, as well as results of the three-dimensional manipulation of polystyrene micro spheres are included. 
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1. INTRODUCTION 

Fast computation of holograms is a prerequisite for building interactive holographic optical manipulation systems. 
Unfortunately, the nonlinear and usually non-analytic relations between a hologram displayed onto a spatial light 
modulator and its corresponding reconstruction at the sample plane make the use of iterative, computational intensive 
algorithms often necessary [1-3]. Although fast manipulation is still feasible by computing the holograms off-line and 
then displaying them at video rates, only movements with pre-defined trajectories are then possible. Thus, interaction 
with a potential human operator needs real-time generation of holograms through faster algorithms [4-8] or by means of 
more powerful computing platforms, such as the graphic processing units of modern graphics boards [9,10].  

As a matter of fact, rapid generation of optical traps can be achieved by alternate methods, which require no 
computation. For example, time-sharing the laser between traps [11] is a powerful, flexible and inexpensive possibility. 
However, in high-precision applications, the number of trapping sites needs to be small (4-6) [12] since the laser shifts 
prevent accurate measurements of applied force. Also, positioning and movement is limited only to two dimensions. The 
generalized phase contrast method [13] provides an instant conversion between phase and intensity and is therefore well 
suited to quickly generate optical traps with spatial light modulators (SLMs), through a frequency-filtering, all-optical, 
non-holographic approach. Nevertheless, the imaging nature of the setup makes it difficult to control the samples in 
three-dimensions [14]. 

Fresnel diffraction can be used to advantage [15] in real-time steering of optical tweezers since movement of the 
hologram on the computer screen translates into a similar movement of the corresponding trap. On the negative side, 
there seems to be a trade-off among trap efficiency, range of allowed movements and number of simultaneous traps 
because of the limited real state available on the SLM to display the holograms. In our opinion, all these methods lack 
the simplicity and universality of the traditional holographic approach.  

This communication addresses the problem of the high computational load of most existing algorithms and presents a 
low-cost solution based on the random mask encoding technique of multiplexing phase-only filters [16]. The result is a 
direct, non-iterative and extremely fast algorithm that can be used for computing arbitrary arrays of optical traps. 
Additional benefits include the possibility of modifying any existing hologram to quickly add more trapping sites and the 
inexistence of ghost traps or replicas. The main drawback of the method is a reduced efficiency, being more suitable to 
generate a small number of optical traps. We have implemented the procedure on a Pentium IV personal computer and 
achieved frame rates in excess of 10 Hz with little code optimization. A Java front end allows the user to interactively 
manipulate microscopic samples just by clicking and dragging on a computer screen. 
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2. EXPERIMENTAL SETUP 

Our experimental setup is shown in Fig. 1. It is very similar to that discussed in detail in Ref. 17 except for the 
microscope, which has been upgraded to a higher quality instrument.  

A continuous-wave, frequency-doubled Nd:YVO4 laser beam (Viasho Technology, λ=532 nm, 120 mW) is expanded by 
a spatial filter, collimated by lens L1 and linearly polarized by a high quality polarizer. It illuminates a twisted-nematic 
liquid-crystal spatial light modulator (Holoeye Photonics, LC-R 2500) sandwiched between a half-wave plate and an 
analyzer with the proper orientations to achieve phase-only modulation [17]. Interestingly, the Holoeye SLM is a 
reflective device and we place it tilted 45º with respect to the incident beam (see Figure 2). The usual configuration for a 
reflective modulator is to place it perpendicular to the optical axis and then redirect the beam out with a beam-splitter. 
However, the control of the input and output polarization is a much convenient feature of the setup as it allows free 
access to the different operating modes of the device (such as the phase-only modulation operating curve). Both 
constraints, polarization control and on-axis operation, can be met by the use of a non-polarizing beam-splitter but the 
round trip path through that element would result in a loss of 75% of the incident light. This is unacceptable considering 
the large power required for trapping even a small number of samples, so we discarded that possibility in favor of that 
shown in Figure 2. It is also very convenient from the point of view of arranging the whole optical setup and we have 
found that, although not lying on a plane perpendicular to the axis, the SLM is capable of producing fairly good traps. 

Light finally enters an inverted microscope (Nikon Eclipse TE-2000E) through the fluorescence port and is reflected 
upwards by a dichroic mirror (Chroma Technology) to an oil-immersion, high numerical aperture, objective (Nikon Plan 
Fluor 100x, 1.30 NA). Lenses L2 and L3 (which is inside the microscope, attached to the fluorescence cube that contains 
the dichroic), image the SLM onto the exit pupil of the microscope objective to prevent vignetting of high frequency 
Fourier components [2,3]. They are arranged to form a telescope so as to still provide parallel illumination to the infinity-
corrected objective. Finally, a CCD camera (Qimaging QICAM 1394) allows observation and recording of the 
experiments. 

Since the spatial light modulator is illuminated by collimated light and the diffracted beams are observed at the focal 
plane of the objective lens (focal length, f’), the relation between the complex reflectance, R(u,v), of the modulator and 
the electric field at the observation plane, E(x,y), is, except for irrelevant phase terms [18], that of a Fourier transform: 
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Fig. 1. Optical setup for generating holographic optical tweezers 
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Fig. 2. Holoeye reflective spatial light modulator tilted 45º with respect to the optical axis 

 

3. ALGORITHM  

Given Eq. (1) above, when the spatial light modulator displays the hologram: 
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a set of N off-axis traps will appear at positions (xk,yk) on the sample plane, according to: 
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Hologram R(u,v) is the superposition of N linear phase functions with slopes (xk,yk). Unfortunately, R(u,v) is not a pure 
phase function and cannot be directly displayed on a modulator working in a phase-only configuration. Therefore, this 
problem needs to be solved if optical tweezers arrays by means of holographic optical elements on spatial light 
modulators are to be generated. The algorithms [1-6] try to find a hologram that, being a phase function, does not deviate 
significantly from the expected goal, that of producing the desired trap array. Such algorithms are usually iterative and 
computationally expensive.  

Our solution is non-iterative. It is an adaptation of the random-mask encoding technique [7, 16] to this particular problem 
and consists of the multiplication of the linear phase functions in Eq. (2) by spatially disjoint binary masks, i.e.: 
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Fig. 3. Encoding two linear phases by complementary random binary masks. 
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 That is, the method involves dividing the spatial light modulator into as many subdomains, Ik, as traps are required so 
that these subdomains do not overlap and jointly cover the whole modulator area. Then, each linear phase function is 
displayed only on the pixels of a given Ik. (see Fig. 3). 

With this arrangement, R(u,v) is trivially a pure phase function with no further modification. Applying the convolution 
theorem [18] and Eq. (3), the field at the sample plane is: 
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where Hk(x,y) is the Fourier Transform of hk(u,v). Thus, function Hk(x,y) appears centered at position (xk,yk). If the binary 
masks are selected such that their Fourier transforms Hk(x,y) consist of a single peak with flat sidelobes, then E(x,y) will 
be a good approximation to the desired array of optical traps. Random masks, as proposed in Ref. 16, give good results 
in this respect. For example, Fig. 4(a) shows a random binary mask with 50% of its pixels set to one and the remaining 
50% to zero.  Fig. 4(b) shows the magnitude squared of its Fourier transform, a sharp peak on a small random 
background. The scale on the Z axis is logarithmic so as better to show small intensity features, since the background is 
five orders of magnitude lower than the central peak. 

Fig. 5 shows a comparison between the experimental results of this algorithm and those obtained by the “gratings and 
lenses” algorithm [6,8]. Notice the absence of ghost traps in Fig. 5(a) since off-trap energy tends to scatter over the 
whole sample plane, instead of concentrating at specific locations (giving undesired trapping sites, such as those in Fig. 
5(b)).   

 

 

 

 

 

 

 

 

 

 

Fig. 4. a) Binary mask, 256x256 pixels. b) Magnitude squared of its Fourier transform (log scale). 
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a)              b) 

Fig. 5. Three traps produced by the “random mask” (a) and the “gratings and lenses” (b) algorithms, respectively. 

 

Also, Figure 5 shows the main drawback of our algorithm, a lower efficiency. The three traps in Fig. 5(a) are 
substantially less energetic than those in Fig. 5(b). In fact, the random mask encoding technique lends itself easily to 
analysis in this regard: 

Let us consider a hologram, R(j,k), of NxN pixels designed to create P traps and let us assume, with no loss of generality, 
that is illuminated by a plane wave of unit amplitude, A=exp(iφ). The energy at a plane immediately after the hologram 
is: 
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whence, since the hologram is a pure phase function, we have: 
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which, by virtue of Parseval’s theorem, is also the total energy at the reconstruction plane. 

On the other hand, the field amplitude at the mth trap position, (rm,sm), can be written, in discrete notation, as: 

 

( ) ( ) ( )

( ) ( ) ( )[ ] ( ) .
1

,
12

exp,
1

2
exp,

1
,

1

2

11 1 1

1 1

P

N

P

N

N
kjh

N
kssjrr

N
ikjh

N

ksjr
N

ikjR
N

srC

N

j

N

k

m

N

j

N

k

lmlm

P

l

l

N

j

N

k

mmmm

==≈








−+−−=

=





+−=

∑∑∑∑∑

∑∑

= == = =

= =

π

π

 (10) 

where R(j,k) represents the hologram and hl(j,k) the lth random binary mask. 

Therefore, the total energy reaching the P traps is: 
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whence, the efficiency of the hologram finally takes the form: 
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4. ADDITIONAL USEFUL PROPERTIES 

This procedure shows some useful features that we comment on below.  

a) Intensity control 

The intensity of optical traps generated by the algorithm shows a remarkable uniformity for a small number of traps. For 
example, in our experiments we have found maximum variations in intensity of less than 4% for arrays of 2x2 optical 
traps (512x512 pixel holograms). However, for larger arrays (6x6) the intensity variations may increase up to 25%. 
When this is a problem or if the optical traps have to be of different intensity, a slightly more elaborate algorithm needs 
to be used [16]. Masks corresponding to traps that are required to be brighter are selected with a somewhat larger pixel 
count at the expense of other masks (those corresponding to traps need to be weaker).  

b) Incremental updating and hologram multiplexing 

Contrary to other algorithms, all information is very well localized within the binary masks so addition of new trapping 
sites can be done without recomputing the whole hologram. Specifically, for a hologram of N pixels that encode m traps, 
N/[m(m+1)] pixels from each binary mask are randomly discarded. Then, the resulting N/(m+1) pixels are used to codify 
the new linear phase. Only these latter pixels need to be updated. 

Interestingly, this can be done over a hologram computed with any other algorithm, in which the information is 
distributed: discard a number of pixels and use them to produce a new trapping site with the random mask encoding 
technique. None of the existing traps is more affected than the others, the net effect is a lower-energy set of existing traps 
and a new trapping site at the desired location. This may be used to temporarily add a new trap to a pre-existing, higher-
quality hologram, for example, for loading an array of optical traps with microscopic samples. Finally, the loading trap 
can be removed by restoring the original pixels.  

Fig. 6 shows the result of adding a new trapping site to a hologram computed by the Gerchberg-Saxton algorithm [3,4,6] 
to produce an array of 2x2 optical traps. One fifth of its pixels were used to encode the new linear phase function. Again, 
the figure shows that the new trap is significantly less energetic than equivalent traps computed by the other algorithm. 
We are studying a possible solution to this low efficiency based on reducing the randomness of the binary masks (Fig. 7, 
simulated results). 

Finally, two or more holograms can be multiplexed by multiplication of binary disjoint random masks to merge their 
individual properties into a single hologram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Addition of a new trap to an already existing hologram. 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

a)   b) 

Fig. 7. Modified hologram based on less random binary masks (a) and generated traps (b). 

 

c) Speed 

Once the random masks are selected, the hologram can be directly written onto the spatial light modulator with little 
extra computation. Thus, the procedure is very fast and can be easily carried out at near video-rates, therefore enabling 
real-time interaction with the user. We have developed an interactive holographic optical manipulation system based on 
this algorithm, as shown in the following image sequences (Figs. 8 and 9). The control software is implemented in Java 
and is capable of displaying holograms (512x512 pixels) at an average rate of 10-12 Hz (including aberration correction 
of the Holoeye SLM and compensation of the operating curve nonlinearities), using a Pentium IV HT, 3.2 Ghz, 
computer. 

 

5. CONCLUSIONS 

We propose a new procedure for the generation of holographic optical tweezers based on the random mask encoding 
technique. The result is a direct, non-iterative algorithm that has a number of positive features. Specifically, the 
algorithm is very fast and video-rate generation is easy to achieve. Moreover, the algorithm does not produce ghost traps 
and can be used to add further trapping sites to existing holograms, even those generated by other algorithms, without the 
need to re-compute them. Finally, the main limitation of this procedure seems to be hologram efficiency. We have shown 
that the efficiency, defined as the ratio between the energy of the traps to the total energy at the sample plane, decreases 
monotonically with increasing number of traps. Thus the algorithm seems suitable only to generate a small number of 
optical tweezers. 
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Fig. 8. Sequence of images showing the trapping and manipulation of four polystyrene microspheres. 
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Fig. 9. Sequence of images showing trapping and manipulation in three dimensions. 
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